# Winsor & Newton Artists Retouching Varnish Spray Jasco Pty Limited Chemwatch: **5435-18** Version No: **2.1.1.1** Safety Data Sheet according to WHS and ADG requirements # Chemwatch Hazard Alert Code: 4 Issue Date: **10/22/2020**Print Date: **11/03/2020**L.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # Product Identifier | Product name | Winsor & Newton Artists Retouching Varnish Spray | | |-------------------------------|--------------------------------------------------|--| | Synonyms | Not Available | | | Proper shipping name | AEROSOLS | | | Other means of identification | Not Available | | # Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Artists, craft and hobby paints. | |--------------------------|---------------------------------------------| | Relevant identified uses | Use according to manufacturer's directions. | # Details of the supplier of the safety data sheet | Registered company name | Jasco Pty Limited | | |-------------------------|---------------------------------------------------|--| | Address | 1-5 Commercial Road Kingsgrove NSW 2208 Australia | | | Telephone | +61 2 9807 1555 | | | Fax | Not Available | | | Website | www.jasco.com.au | | | Email | sales@jasco.com.au | | # **Emergency telephone number** | Association / Organisation | Australian Poisons Centre | | |-----------------------------------|---------------------------|--| | Emergency telephone numbers | 13 11 26 (24/7) | | | Other emergency telephone numbers | Not Available | | # **SECTION 2 Hazards identification** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | |-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Classification <sup>[1]</sup> | Flammable Aerosols Category 1, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -<br>Annex VI | #### Label elements Hazard pictogram(s) Version No: **2.1.1.1** # Winsor & Newton Artists Retouching Varnish Spray Issue Date: 10/22/2020 Print Date: 11/03/2020 # Hazard statement(s) | H222 | Extremely flammable aerosol. | |--------|--------------------------------------------------| | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H317 | May cause an allergic skin reaction. | | H336 | May cause drowsiness or dizziness. | | H304 | May be fatal if swallowed and enters airways. | | H402 | Harmful to aquatic life. | | H411 | Toxic to aquatic life with long lasting effects. | | AUH044 | Risk of explosion if heated under confinement. | # Precautionary statement(s) Prevention | P210 | Keep away from heat/sparks/open flames/hot surfaces No smoking. | |------|----------------------------------------------------------------------------| | P211 | Do not spray on an open flame or other ignition source. | | P251 | Pressurized container: Do not pierce or burn, even after use. | | P271 | Use only outdoors or in a well-ventilated area. | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | P261 | Avoid breathing gas. | | P273 | Avoid release to the environment. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | # Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. | |----------------|----------------------------------------------------------------------------------------------------------------------------------| | P321 | Specific treatment (see advice on this label). | | P331 | Do NOT induce vomiting. | | P362 | Take off contaminated clothing and wash before reuse. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P391 | Collect spillage. | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | # Precautionary statement(s) Storage | P405 | Store locked up. | | |-----------|------------------------------------------------------------------------------|--| | P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. | | | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | | # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** ## **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |------------|-----------|----------------------------------------------------| | 64742-49-0 | 10-30 | hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics | | 1330-20-7 | 5-10 | xylene | | 97-86-9 | 0.1-1 | iso-butyl methacrylate | Issue Date: 10/22/2020 Print Date: 11/03/2020 | CAS No | %[weight] | Name | |---------------|-----------|--------------------------------------------| | Not Available | balance | Ingredients determined not to be hazardous | # **SECTION 4 First aid measures** # **Description of first aid measures** | secon priori or mor ara m | | |---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | <ul> <li>Avoid giving milk or oils.</li> <li>Avoid giving alcohol.</li> <li>Not considered a normal route of entry.</li> <li>If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.</li> </ul> | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 Firefighting measures** # **Extinguishing media** SMALL FIRE: ▶ Water spray, dry chemical or CO2 LARGE FIRE: Water spray or fog. # Special hazards arising from the substrate or mixture | Fire Incompatibility | |----------------------| |----------------------| Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | Advice for firefighters | | |-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Fire Fighting | <ul> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>May be violently or explosively reactive.</li> <li>Wear breathing apparatus plus protective gloves.</li> <li>Prevent, by any means available, spillage from entering drains or water course.</li> <li>If safe, switch off electrical equipment until vapour fire hazard removed.</li> <li>Use water delivered as a fine spray to control fire and cool adjacent area.</li> <li>DO NOT approach containers suspected to be hot.</li> <li>Cool fire exposed containers with water spray from a protected location.</li> <li>If safe to do so, remove containers from path of fire.</li> <li>Equipment should be thoroughly decontaminated after use.</li> </ul> | | Fire/Explosion Hazard | <ul> <li>Liquid and vapour are highly flammable.</li> <li>Severe fire hazard when exposed to heat or flame.</li> <li>Vapour forms an explosive mixture with air.</li> <li>Severe explosion hazard, in the form of vapour, when exposed to flame or spark.</li> <li>Vapour may travel a considerable distance to source of ignition.</li> <li>Heating may cause expansion or decomposition with violent container rupture.</li> <li>Aerosol cans may explode on exposure to naked flames.</li> </ul> | Chemwatch: 5435-18 Page 4 of 17 Issue Date: 10/22/2020 Version No: 2.1.1.1 Print Date: 11/03/2020 #### Winsor & Newton Artists Retouching Varnish Spray Rupturing containers may rocket and scatter burning materials. ▶ Hazards may not be restricted to pressure effects. ▶ May emit acrid, poisonous or corrosive fumes. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: Combustible. Will burn if ignited. carbon dioxide (CO2) other pyrolysis products typical of burning organic material. **HAZCHEM** Not Applicable # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor Spills | <ul> <li>Clean up all spills immediately.</li> <li>Avoid breathing vapours and contact with skin and eyes.</li> <li>Wear protective clothing, impervious gloves and safety glasses.</li> <li>Shut off all possible sources of ignition and increase ventilation.</li> <li>Wipe up.</li> <li>If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.</li> <li>Undamaged cans should be gathered and stowed safely.</li> </ul> | |--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Major Spills | <ul> <li>Clear area of personnel and move upwind.</li> <li>Alert Fire Brigade and tell them location and nature of hazard.</li> <li>Wear full body protective clothing with breathing apparatus.</li> <li>Prevent, by all means available, spillage from entering drains or water courses.</li> <li>Consider evacuation (or protect in place).</li> <li>No smoking, naked lights or ignition sources.</li> <li>Increase ventilation.</li> <li>Stop leak if safe to do so.</li> <li>Water spray or fog may be used to disperse / absorb vapour.</li> <li>Contain or absorb spill with sand, earth or vermiculite.</li> <li>Collect recoverable product into labelled containers for recycling.</li> <li>Collect solid residues and seal in labelled drums for disposal.</li> <li>Wash area and prevent runoff into drains.</li> <li>After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.</li> <li>If contamination of drains or waterways occurs, advise emergency services.</li> <li>Remove leaking cylinders to a safe place.</li> <li>Fit vent pipes. Release pressure under safe, controlled conditions</li> <li>Burn issuing gas at vent pipes.</li> <li>DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve.</li> </ul> | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Safe handling #### Precautions for safe handling The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - ▶ DO NOT incinerate or puncture aerosol cans. - ► DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. Chemwatch: 5435-18 Page 5 of 17 Version No: 2.1.1.1 Issue Date: 10/22/2020 Print Date: 11/03/2020 Winsor & Newton Retouching Varnish Spray - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - ▶ Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are - Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can - ▶ Store in original containers in approved flammable liquid storage area. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - ▶ Keep containers securely sealed. Contents under pressure. - Store away from incompatible materials. - Store in a cool, dry, well ventilated area. - ▶ Avoid storage at temperatures higher than 40 deg C. - ▶ Store in an upright position. - ▶ Protect containers against physical damage. - Check regularly for spills and leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ### Conditions for safe storage, including any incompatibilities | Suitable container | Aerosol dispenser. Check that containers are clearly labelled. | |-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Storage incompatibility | <ul> <li>Avoid reaction with oxidising agents, bases and strong reducing agents.</li> <li>Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.</li> </ul> | # **SECTION 8 Exposure controls / personal protection** #### Control parameters #### Occupational Exposure Limits (OEL) Other information # **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|------------|-----------------------------|--------------------|---------------------|---------------|---------------| | Australia Exposure<br>Standards | xylene | Xylene (o-, m-, p- isomers) | 80 ppm / 350 mg/m3 | 655 mg/m3 / 150 ppm | Not Available | Not Available | #### **Emergency Limits** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | |----------------------------------------------------------|----------------------------------------|---------------|---------------|---------------| | hydrocarbons, C7-9,<br>n-alkanes, isoalkanes,<br>cyclics | Naphtha (petroleum),hydrotreated light | 1,000 mg/m3 | 11,000 mg/m3 | 66,000 mg/m3 | | xylene | Xylenes | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |----------------------------------------------------------|---------------|---------------| | hydrocarbons, C7-9,<br>n-alkanes, isoalkanes,<br>cyclics | Not Available | Not Available | | xylene | 900 ppm | Not Available | | iso-butyl methacrylate | Not Available | Not Available | #### **Occupational Exposure Banding** | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--| | hydrocarbons, C7-9,<br>n-alkanes, isoalkanes,<br>cyclics | С | > 1 to ≤ 10 parts per million (ppm) | | | iso-butyl methacrylate | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | # **MATERIAL DATA** NOTE H: Special requirements exist in relation to classification and labelling of this substance. This note applies to certain coal- and oil -derived substances and to certain entries for groups of substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex Chemwatch: **5435-18**Version No: **2.1.1.1** #### Winsor & Newton Retouching Varnish Spray Page 6 of 17 Issue Date: **10/22/2020**Print Date: **11/03/2020** VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP NOTE D: Certain substances which are susceptible to spontaneous polymerisation or decomposition are generally placed on the market in a stabilised form. It is in this form that they are listed on Annex I When they are placed on the market in a non-stabilised form, the label must state the name of the substance followed by the words "non-stabilised" European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. #### Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min.) 0.5-1 m/saerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, (100-200 spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (200-500 (active generation into zone of rapid air motion) # Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection Appropriate engineering controls #### reisonai protection - ► Safety glasses with side shields. - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection Eye and face protection See Hand protection below f/min.) Version No: **2.1.1.1** #### Winsor & Newton Artists Retouching Varnish Spray Issue Date: **10/22/2020**Print Date: **11/03/2020** # Hands/feet protection Nitrile-rubber protective gloves is suitable aswell. - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### **Body protection** See Other protection below No special equipment needed when handling small quantities. #### OTHERWISE: - Overalls. - Skin cleansing cream. - Eyewash unit. #### Other protection - Do not spray on hot surfaces. - The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. - Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Winsor & Newton Artists Retouching Varnish Spray | Material | СРІ | |-------------------|-----| | PE/EVAL/PE | A | | PVA | A | | TEFLON | A | | VITON | A | | BUTYL | С | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PVC | С | | PVDC/PE/PVDC | С | - \* CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - \* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. ## Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum<br>Protection Factor | Half-Face<br>Respirator | Full-Face<br>Respirator | Powered Air<br>Respirator | |---------------------------------------|-------------------------|-------------------------|----------------------------| | up to 10 x ES | A-AUS / Class<br>1 P2 | - | A-PAPR-AUS /<br>Class 1 P2 | | up to 50 x ES | Air-line* | - | - | | up to 100 x ES | - | A-3 P2 | - | | 100+ x ES | - | Air-line** | - | - \* Continuous-flow; \*\* Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. #### **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | Liquid with a characteristic odour. | | | |----------------|-------------------------------------|------------------------------|---------------| | | | | | | Physical state | Compressed Gas | Relative density (Water = 1) | Not Available | Chemwatch: **5435-18** Page **8** of **17** #### Winsor & Newton Artists Retouching Varnish Spray Issue Date: 10/22/2020 Print Date: 11/03/2020 | | 1 | | 1 | |----------------------------------------------|---------------|-----------------------------------------|----------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | 50.6 | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** Version No: 2.1.1.1 | Reactivity | See section 7 | | | | |------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | Chemical stability | <ul> <li>Elevated temperatures.</li> <li>Presence of open flame.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> | | | | | Possibility of hazardous reactions | See section 7 | | | | | Conditions to avoid | See section 7 | | | | | Incompatible materials | See section 7 | | | | | Hazardous decomposition products | See section 5 | | | | #### **SECTION 11 Toxicological information** #### Information on toxicological effects Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by inhalation. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. ### Inhaled Common, generalised symptoms associated with toxic gas inhalation include: - central nervous system effects such as depression, headache, confusion, dizziness, progressive stupor, coma and seizures; - respiratory system complications may include acute pulmonary oedema, dyspnoea, stridor, tachypnoea, bronchospasm, wheezing and other reactive airway symptoms, and respiratory arrest: - cardiovascular effects may include cardiovascular collapse, arrhythmias and cardiac arrest; - gastrointestinal effects may also be present and may include mucous membrane irritation, nausea and vomiting (sometimes bloody), and abdominal pain. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. Chemwatch: **5435-18** Page **9** of **17** Version No: 2.1.1.1 Winsor & Newton Artists Retouching Varnish Spray Issue Date: **10/22/2020**Print Date: **11/03/2020** When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and ataxia within the first 24 hours. Symptoms disappeared after 24 hours. Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, loss of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inebriation, visual disturbances, tremor, muscular weakness, impairment of coordination or paresthesia. No symptoms associated with solvent exposure were observed. With a human expert panel, odour from liquid imaging copier emissions became weakly discernible at approximately 50 ppm. Numerous long-term exposures have been conducted in animals with only one major finding observed. Renal tubular damage has been found in kidneys of male rats upon repeated exposures to isoparaffins. It does not occur in mice or in female rats. This male rat nephropathy has been observed with a number of hydrocarbons, including wholly vaporized unleaded gasoline. The phenomenon has been attributed to reversible binding of hydrocarbon to alpha2-globulin. Since humans do not synthesize alpha2-globulin or a similar protein, the finding is not considered to be of biological significance to man. No clinically significant renal abnormalities have been found in refinery workers exposed to hydrocarbons. When evaluated for developmental toxicity in rats, isoparaffins were neither embryotoxic nor teratogenic. Isoparaffins were consistently negative on standard bacterial genotoxicity assays. They were also non-genotoxic in *in vivo* mammalian testing for somatic or germ cell mutations (mouse micronucleus test and rat dominant lethal assay, respectively). Mullin et al: Jnl Applied Toxicology 10, pp 136-142, 2006 The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics. Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by swallowing. Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industrial environments Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Many aliphatic hydrocarbons create a burning sensation because they are irritating to the GI mucosa. Vomiting has been reported in up to one third of all hydrocarbon exposures. While most aliphatic hydrocarbons have little GI absorption, aspiration frequently occurs, either initially or in a semi-delayed fashion as the patient coughs or vomits, thereby resulting in pulmonary effects. Once aspirated, the hydrocarbons can create a severe pneumonitis. Rats given isoparaffinic hydrocarbons - isoalkanes- (after 18-24 hours fasting) showed lethargy and/or general weakness, ataxia and diarrhoea. Symptoms disappeared within 24-28 hours. # Skin Contact Ingestion Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Dermally, isoparaffins have produced slight to moderate irritation in animals and humans under occluded patch conditions where evaporation cannot freely occur. However, they are not irritating in non-occluded tests, which are a more realistic simulation of human exposure. They have not been found to be sensitisers in guinea pig or human patch testing. However, occasional rare idiosyncratic sensitisation reactions in humans have been reported. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### Eye Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Instillation of isoparaffins into rabbit eyes produces only slight irritation. Chemwatch: **5435-18**Version No: **2.1.1.1** Chronic # Winsor & Newton Artists Retouching Varnish Spray Page 10 of 17 Issue Date: 10/22/2020 Print Date: 11/03/2020 Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures.. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Principal route of occupational exposure to the gas is by inhalation. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. | Winsor & Newton | TOXICITY | IRRITATION | | | |-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--| | Artists Retouching<br>Varnish Spray | Not Available | Not Available | | | | | TOXICITY | IRRITATION | | | | | Oral (rat) LD50: >4500 mg/kg <sup>[1]</sup> | Eye : Not irritating * | | | | hydrocarbons, C7-9, | Oral (rat) LD50: >4800 mg/kg <sup>[1]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> | | | | n-alkanes, isoalkanes, | Oral (rat) LD50: >5000 mg/kg <sup>[1]</sup> | Skin : Not irritating * | | | | cyclics | Oral (rat) LD50: >5570 mg/kg <sup>[1]</sup> | Skin: adverse effect observed (irritating) <sup>[1]</sup> | | | | | Oral (rat) LD50: >6000 mg/kg <sup>[1]</sup> | | | | | | Oral (rat) LD50: >7000 mg/kg <sup>[1]</sup> | | | | | | TOXICITY | IRRITATION | | | | | 200 mg/kg <sup>[2]</sup> | Eye (human): 200 ppm irritant | | | | | 450 mg/kg <sup>[2]</sup> | Eye (rabbit): 5 mg/24h SEVERE | | | | | 50 mg/kg <sup>[2]</sup> | Eye (rabbit): 87 mg mild | | | | xylene | Dermal (rabbit) LD50: >1700 mg/kg <sup>[2]</sup> | Eye: adverse effect observed (irritating) <sup>[1]</sup> | | | | | Inhalation (rat) LC50: 4994.295 mg/l/4h <sup>[2]</sup> | Skin (rabbit):500 mg/24h moderate | | | | | Oral (mouse) LD50: 2119 mg/kg <sup>[2]</sup> | Skin: adverse effect observed (irritating) <sup>[1]</sup> | | | | | Oral (rat) LD50: 3523-8700 mg/kg <sup>[2]</sup> | | | | | | Oral (rat) LD50: 4300 mg/kg <sup>[2]</sup> | | | | | | TOXICITY | IRRITATION | | | | | 9811568 mg/kg <sup>[2]</sup> | Not Available | | | | | 981-1568 mg/kg <sup>[2]</sup> | | | | | iso-butyl methacrylate | dermal (guinea pig) LD50: 17700 mg/kg <sup>[2]</sup> | | | | | | Oral (mouse) LD50: 11990 mg/kg <sup>[2]</sup> | | | | | | Oral (rat) LD50: 6400 mg/kg <sup>[2]</sup> | | | | | Legend: | Nalue obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | HYDROCARBONS, C7-9, N-ALKANES, ISOALKANES, CYCLICS Based on read-across from a structurally related substance (light alkylate naphtha distillate), no inhalation repeated dose toxicity is expected from the exposure to hydrocarbons, C7-C9, n-alkanes, isoalkanes, cyclics. The NOAEC for systemic toxicity was 8117 mg/m³ corresponding to 2200 ppm. The available data on the genotoxic potential of hydrocarbons, C7-C9, n-alkanes, isoalkanes, cyclics and structurally related substances within a category approach are conclusive but not sufficient for classification.. The available data and available weight of evidence demonstrate that the substances in this category are highly unlikely to be carcinogenic and are not classifiable as carcinogens The weight of evidence based on a category approach indicates that hydrocarbons, C7, n-alkanes, isoalkanes, cyclics are unlikely to present a hazard as neurotoxicant. \* REACh Dossier For Low Boiling Point Naphthas (LBPNs): ### Acute toxicity: LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices. #### Sensitisation: LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies **Repeat dose toxicity:** Chemwatch: **5435-18** Page **11** of **17** Version No: 2.1.1.1 Winsor & Newton Artists Retouching Varnish Spray Issue Date: **10/22/2020**Print Date: **11/03/2020** The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values. Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3 No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3 A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported. #### Genotoxicity: Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results. For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay . Mixed results were observed for UDS and the mouse lymphoma assay. While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results. #### Carcinogenicity: Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect so fuman exposure to LBPN substances. No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group. Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to Chemwatch: **5435-18** Page **12** of **17** #### Winsor & Newton Artists Retouching Varnish Spray Issue Date: **10/22/2020**Print Date: **11/03/2020** humans). Version No: 2.1.1.1 Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals' lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol. No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents. NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted . For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13 . For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring. Low Boiling Point Naphthas [Site-Restricted] Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins. The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver. # XYLENE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: **NOT** classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. #### ISO-BUTYL METHACRYLATE Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. # Continued... Chemwatch: **5435-18** Page **13** of **17** Version No: 2.1.1.1 Winsor & Newton Artists Retouching Varnish Spray the sensitisation potential to humans of n-BMA is low. Issue Date: **10/22/2020**Print Date: **11/03/2020** Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example Monalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53 Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38 For iso-butvl methacrylate (i-BMA) and n-butvl methacrylate (n-BMA): Acute toxicity: It is anticipated that BMA is absorbed after oral or inhalation exposure. In vitro studies using isolated rat liver microsomes or porcine liver esterase showed rapid hydrolysis of n-BMA yielding methacrylic acid and n-butanol. No in vivo metabolism data is available on n-BMA/ i-BMA, but from the in vitro data rapid hydrolysis to methacrylic acid and the corresponding alcohol can be anticipated. n-BMA did not bind to glutathione (GSH) in vitro. It is expected that after hydrolysis the respective cleavage products, methacrylic acid and n-butanol or or isobutanol are further metabolised to CO2. In mammals n-BMA/ i-BMA is of low oral toxicity by the oral, dermal or inhalation route. The have local irritating properties to rabbit skin and eyes. Respiratory tract irritation was observed after inhalation exposure to rats of n-BMA. Whilst n-BMA is a weak skin sensitiser in guinea pigs there is no such evidence for i-BMA. From available human clinical data it can be concluded that Repeat dose toxicity: A repeat dose oral study of limited reliability, indicates that n-BMA is of low oral toxicity. A reliable 28-day exposure inhalation study in rats, for n-BMA demonstrated the formation of nasal lesions indicative of a local irritant effect of the nose without indication of systemic toxicity. **Genotoxicity:** Neither n-BMA nor i-BMA was mutagenic in a number of gene mutation assays with Salmonella typhimurium. i-BMA was not clastogenic in a mouse micronucleus assay. There appears to be little concern for genotoxicity despite limited data Carcinogenicity: Given the lack of carcinogenicity observed with methyl methacrylic (the metabolite) and the lack of genotoxic potential there appears to be little concern for possible carcinogenicity of BMA. Neither isobutanol or n-butanol exhibit carcinogenic potential. **Developmental toxicity:** Available data for methyl methacrylate and n-butanol an isobutanol suggests that there is little concern for possible developmental effects arising out of inhalation exposure to non-maternally toxic concentrations of n-BMA/ i-BMA. **Repeat dose toxicity:** Limited data from repeated dose studies with n-BMA, methyl methacrylate, methacrylic acid and a fertility study with n-butanol did not reveal an y indications for possible toxicity on the reproductive organ Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD), Office of Toxic Substances (OTS), of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH2=CHCOO or CH2=C(CH3)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing. This position has now been revised and acrylates and methacrylates are no longer de facto carcinogens. # XYLENE & ISO-BUTYL METHACRYLATE Reproductive effector in rats | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|----------| | Skin Irritation/Corrosion | <b>✓</b> | Reproductivity | × | | Serious Eye<br>Damage/Irritation | <b>✓</b> | STOT - Single Exposure | <b>✓</b> | | Respiratory or Skin sensitisation | <b>✓</b> | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | <b>~</b> | **Legend: X** − Data either not available or does not fill the criteria for classification ✓ – Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | Minage O Navetan | Endpoint | Test Duration (hr) | Species | Value | Source | |--------------------------------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | Winsor & Newton<br>Artists Retouching<br>Varnish Spray | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | hydrocarbons, C7-9, | LC50 | 96 | Fish | 4.1mg/L | 2 | | n-alkanes, isoalkanes,<br>cyclics | EC50 | 48 | Crustacea | 3mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | >1-mg/L | 2 | | | NOEL | 72 | Algae or other aquatic plants | 0.1mg/L | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | xylene | LC50 | 96 | Fish | 2.6mg/L | 2 | | | EC50 | 48 | Crustacea | 1.8mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 3.2mg/L | 2 | | | NOEC | 73 | Algae or other aquatic plants | 0.44mg/L | 2 | Winsor & Newton Artists Retouching Varnish Spray Issue Date: 10/22/2020 Print Date: 11/03/2020 | | Endpoint | Test Duration (hr) | Species | Value | Source | |------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|--------| | iso-butyl methacrylate | LC50 | 96 | Fish | 20mg/L | 2 | | | EC50 | 48 | Crustacea | =23mg/L | 1 | | | EC50 | 96 | Algae or other aquatic plants | 0.29mg/L | 2 | | | NOEC | 96 | Algae or other aquatic plants | =0.047mg/L | 1 | | Legend: | 3. EPIWIN St | m 1. IUCLID Toxicity Data 2. Europe ECHA<br>uite V3.12 (QSAR) - Aquatic Toxicity Data (E<br>uatic Hazard Assessment Data 6. NITE (Jap | Estimated) 4. US EPA, Ecotox database - Ac | quatic Toxicity Da | ta 5. | Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------------------|-----------------------------|-----------------------------| | xylene | HIGH (Half-life = 360 days) | LOW (Half-life = 1.83 days) | | iso-butyl methacrylate | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | | |------------------------|--------------------|--|--| | xylene | MEDIUM (BCF = 740) | | | | iso-butyl methacrylate | LOW (BCF = 61.9) | | | # Mobility in soil | Ingredient | Mobility | |------------------------|-------------------| | iso-butyl methacrylate | LOW (KOC = 53.31) | ## **SECTION 13 Disposal considerations** # Waste treatment methods - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Product / Packaging Where in doubt contact the responsible authority. Consult State Load West Management Authority. - Consult State Land Waste Management Authority for disposal. - Discharge contents of damaged aerosol cans at an approved site. - Allow small quantities to evaporate. - DO NOT incinerate or puncture aerosol cans. - ▶ Bury residues and emptied aerosol cans at an approved site. # **SECTION 14 Transport information** disposal #### **Labels Required** Marine Pollutant HAZCHEM Not Applicable Issue Date: **10/22/2020**Print Date: **11/03/2020** # Land transport (ADG) | UN number | 1950 | | | |------------------------------|---------------------------------------------|--|--| | UN proper shipping name | AEROSOLS | | | | Transport hazard class(es) | Class 2.1 Subrisk Not Applicable | | | | Packing group | Not Applicable | | | | Environmental hazard | Environmentally hazardous | | | | Special precautions for user | Special provisions 63 190 277 327 344 381 | | | #### Air transport (ICAO-IATA / DGR) | All transport (ICAO-IATA | , DOIC) | | | | |------------------------------|-----------------------------------------------------------|----------------|----------------|--| | UN number | 1950 | | | | | UN proper shipping name | Aerosols, flammable | | | | | | ICAO/IATA Class | 2.1 | | | | Transport hazard class(es) | ICAO / IATA Subrisk | Not Applicable | | | | | ERG Code | 10L | | | | Packing group | Not Applicable | | | | | Environmental hazard | Environmentally hazardous | | | | | | Special provisions | | A145 A167 A802 | | | | Cargo Only Packing Instructions | | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | Special precautions for user | Passenger and Cargo Packing Instructions | | 203 | | | | Passenger and Cargo Maximum Qty / Pack | | 75 kg | | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y203 | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 30 kg G | | # Sea transport (IMDG-Code / GGVSee) | UN number | 1950 | | | |------------------------------|--------------------------------------------------|--------------------|--| | UN proper shipping name | AEROSOLS | | | | Transport hazard class(es) | | 2.1 Not Applicable | | | Packing group | Not Applicable | | | | Environmental hazard | Marine Pollutant | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs Winsor & Newton Artists Retouching Varnish Spray Issue Date: **10/22/2020**Print Date: **11/03/2020** xylene is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Version No: 2.1.1.1 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs iso-butyl methacrylate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) # **National Inventory Status** | National Inventory | Status | | | |-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Australia - AIIC | Yes | | | | Australia - Non-Industrial<br>Use | No (hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics; xylene; iso-butyl methacrylate) | | | | Canada - DSL | Yes | | | | Canada - NDSL | No (hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics; xylene; iso-butyl methacrylate) | | | | China - IECSC | Yes | | | | Europe - EINEC / ELINCS /<br>NLP | Yes | | | | Japan - ENCS | No (hydrocarbons, C7-9, n-alkanes, isoalkanes, cyclics) | | | | Korea - KECI | Yes | | | | New Zealand - NZIoC | Yes | | | | Philippines - PICCS | Yes | | | | USA - TSCA | Yes | | | | Taiwan - TCSI | Yes | | | | Mexico - INSQ | Yes | | | | Vietnam - NCI | Yes | | | | Russia - ARIPS | Yes | | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | | #### **SECTION 16 Other information** | Revision Date | 10/22/2020 | |---------------|------------| | Initial Date | 10/22/2020 | ## **SDS Version Summary** | Version | Issue Date | Sections Updated | |---------|------------|--------------------------------------| | 2.1.1.1 | 10/22/2020 | Fire Fighter (fire/explosion hazard) | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. # **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average ${\sf PC-STEL} : {\sf Permissible\ Concentration-Short\ Term\ Exposure\ Limit}$ IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit Chemwatch: 5435-18 Page 17 of 17 Issue Date: 10/22/2020 Version No: 2.1.1.1 Print Date: 11/03/2020 # Winsor & Newton Artists Retouching Varnish Spray TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index # This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.