

Reeves Paint By Numbers Jasco Pty Limited

Chemwatch: 5486-88
Version No: 2.1.14.9

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **20/08/2021**Print Date: **24/08/2021**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Reeves Paint By Numbers	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Painting. SDS are intended for use in the workplace. For domestic-use products, refer to consumer labels. Use according to manufacturer's directions.
--------------------------	---

Details of the supplier of the safety data sheet

Registered company name	Jasco Pty Limited	
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia	
Telephone	+61 2 9807 1555	
Fax	Not Available	
Website	www.jasco.com.au	
Email	sales@jasco.com.au	

Emergency telephone number

Association / Organisation	Australian Poisons Centre	
Emergency telephone numbers	13 11 26 (24/7)	
Other emergency telephone numbers	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 3	
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) Annex VI		

Label elements

Hazard pictogram(s)

Issue Date: **20/08/2021**Print Date: **24/08/2021**

Signal word Warning

Hazard statement(s)

H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H335	May cause respiratory irritation.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P271	P271 Use only outdoors or in a well-ventilated area.	
P261 Avoid breathing mist/vapours/spray.		
P273	Avoid release to the environment.	
P280	P280 Wear protective gloves, protective clothing, eye protection and face protection.	
P264	Wash all exposed external body areas thoroughly after handling.	

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312 Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.		
P337+P313	If eye irritation persists: Get medical advice/attention.	
P302+P352	IF ON SKIN: Wash with plenty of water.	
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	

Precautionary statement(s) Storage

P405	Store locked up.	
P403+P233 Store in a well-ventilated place. Keep container tightly closed.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
13463-67-7	30-<60	titanium dioxide
9003-01-4	10-<30	acrylic acid homopolymer
7727-43-7	<10	barium sulfate
57-55-6	<5	propylene glycol
124-68-5	<1	<u>monoisobutanolamine</u>
52-51-7	<1	2-bromo-2-nitropropan-1,3-diol
7732-18-5	30-<60	<u>water</u>
L	egend: 1. Classified by Chemwa	atch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 -

d: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L; * EU IOELVs available

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

▶ Wash out immediately with fresh running water.

Reeves Paint By Numbers

Page 3 of 19 Issue Date: 20/08/2021 Print Date: 24/08/2021

	 Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- After ingestion of barium acid salts, severe gastro-intestinal irritation followed by muscle twitching, progressive flaccid paralysis and severe hypokalaemia and hypertension, occurs.
- ▶ Respiratory failure, renal failure and occasional cardiac dysrhythmias may result from an acute ingestion.
- Use sodium sulfate as a cathartic. Add 5-10 gm of sodium sulfate to lavage solution or as fluid supplement to Ipecac syrup (the sulfate salt is not absorbed)
- Monitor cardiac rhythm and serum potassium closely to establish the trend over the first 24 hours. Large doses of potassium may be needed to correct the
- Administer generous amounts of fluid replacement but monitor the urine and serum for evidence of renal failure. [Ellenhorn and Barceloux: Medical Toxicology]

SECTION 5 Firefighting measures

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Combustion products include:

Fire Incompatibility	None known.		
Advice for firefighters			
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 		
 The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. 			

Chemwatch: 5486-88 Page 4 of 19 Issue Date: 20/08/2021 Version No: 2.1.14.9 Print Date: 24/08/2021

Reeves Paint By Numbers

carbon dioxide (CO2) nitrogen oxides (NOx) metal oxides other pyrolysis products typical of burning organic material. Decomposes at high temperatures to produce barium oxide. Barium oxide is strongly alkaline and, upon contact with water, is exothermic. When barium oxide reacts with oxygen to give a peroxide, there is a fire and explosion risk. May emit poisonous fumes. May emit corrosive fumes. **HAZCHEM** Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for	containment and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
 - ► When handling, **DO NOT** eat, drink or smoke.
 - Keep containers securely sealed when not in use.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Reeves Paint By Numbers

Issue Date: **20/08/2021**Print Date: **24/08/2021**

Other information

- Store in original containers.
- Keep containers securely sealed.
- ▶ No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Avoid reaction with oxidising agents, bases and strong reducing agents.
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	titanium dioxide	Titanium dioxide	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	barium sulfate	Barium sulphate	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	propylene glycol	Propane-1,2-diol: particulates only	10 mg/m3	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol	Propane-1,2-diol total: (vapour & particulates)	150 ppm / 474 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
titanium dioxide	30 mg/m3	330 mg/m3	2,000 mg/m3
barium sulfate	15 mg/m3	170 mg/m3	990 mg/m3
propylene glycol	30 mg/m3	330 mg/m3	2,000 mg/m3
propylene glycol	30 mg/m3	1,300 mg/m3	7,900 mg/m3
monoisobutanolamine	17 mg/m3	190 mg/m3	570 mg/m3

Ingredient	Original IDLH	Revised IDLH
titanium dioxide	5,000 mg/m3	Not Available
acrylic acid homopolymer	Not Available	Not Available
barium sulfate	Not Available	Not Available
propylene glycol	Not Available	Not Available
monoisobutanolamine	Not Available	Not Available
2-bromo-2-nitropropan- 1,3-diol	Not Available	Not Available
water	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
acrylic acid homopolymer	E	≤ 0.01 mg/m³	
monoisobutanolamine	E	≤ 0.01 mg/m³	

Notes:

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Page 6 of 19

Reeves Paint By Numbers

Issue Date: **20/08/2021**Print Date: **24/08/2021**

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
2-bromo-2-nitropropan- 1,3-diol	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

No special equipment for minor exposure i.e. when handling small quantities. OTHERWISE:

► Safety glasses with side shields.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

Reeves Paint By Numbers

Issue Date: **20/08/2021**Print Date: **24/08/2021**

Skin protection	See Hand protection below	
Hands/feet protection	No special equipment needed when handling small quantities. OTHERWISE: Wear general protective gloves, e.g. light weight rubber gloves.	
Body protection	See Other protection below	
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. 	

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Reeves Paint By Numbers

Material	СРІ
BUTYL	С
NATURAL RUBBER	С
NEOPRENE	С
PE/EVAL/PE	С
PVA	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	White paste.		
Physical state	Non Slump Paste	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable

 Chemwatch: 5486-88
 Page 8 of 19
 Issue Date: 20/08/2021

 Version No: 2.1.14.9
 Print Date: 24/08/2021

Reeves Paint By Numbers

Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of dusts, generated by the material, during the course of normal handling, may be harmful.

Accidental ingestion of the material may be damaging to the health of the individual.

All cases of acute oral barium poisoning in adults exhibit gastrointestinal disturbances as the initial symptoms. These include gastric pain, vomiting, and diarrhea.

Ingestion of soluble barium compounds may result in ulceration of the mucous membranes of the gastrointestinal tract, tightness in the muscles of the face and neck, gastroenteritis, vomiting, diarrhoea, muscular tremors and paralysis, anxiety, weakness, laboured breathing, cardiac irregularity due to contractions of smooth, striated and cardiac muscles (often violent and painful), slow irregular pulse, hypertension, convulsions and respiratory failure.

The predominant musculoskeletal effect observed in cases of barium toxicity in humans is progressive muscle weakness, often leading to partial or total paralysis. In severe cases, the paralysis affects the respiratory system. The likely cause of the muscle weakness was the barium-induced hypokalaemia (low potassium levels) rather than a direct effect on muscles.

Numbness and tingling around the mouth and neck were sometimes among the first symptoms of barium toxicity in humans. Occasionally, these neurological symptoms extended to the extremities. Partial and complete paralysis occurred in severe cases, often accompanied by an absence of deep tendon reflexes

Toxic effects on the kidneys have been observed in several adult cases of acute barium

poisoning. Effects include hemoglobin in the urine (which may be indicative of kidney damage), renal insufficiency, degeneration of the kidneys, and acute renal failure.

Ingestion

Studies in animals suggest that the kidney is a critical target of barium toxicity. An increase in relative kidney weight (kidney/brain weight ratio) was observed in male and female rats receiving a single gavage dose of 198 mg barium/kg/day as barium chloride in water.

Acute exposure to presumably high doses of barium carbonate, barium sulfate, or barium chloride can result in serious effects on heart rhythm. Barium adversely affects cardiac automaticity resulting in ventricular tachycardia and other disruptions of rhythm. Hypotension has also been reported in some cases. The likely cause of these effects was barium-induced hypokalaemia.

Several human studies have investigated a possible association between exposure to low levels of barium and alterations in blood pressure and cardiac rhythms. In a small-scale (11 subjects) study of individuals exposed to 0.1 or 0.2 mg barium/kg/day as barium chloride in drinking water for 4 weeks, no significant alterations in blood pressure or ECG readings were found. There was no significant alteration in blood pressure measurements or alterations in hypertension, heart disease, or stroke among residents of two communities with elevated (0.2 mg barium/kg/day) or low (0.003 mg barium/kg/day) levels of barium in drinking water. Significantly higher mortality rates for cardiovascular disease and heart disease (arteriosclerosis) were found in the elevated barium communities (0.06-0.3 mg barium/kg/day) than in the low barium communities (0.006 mg barium/kg/day). The largest difference between the groups was in individuals 65 years of age and older. These results should be interpreted

acid milieu of the stomach.

Page 9 of 19 Reeves Paint By Numbers

Issue Date: 20/08/2021 Print Date: 24/08/2021

cautiously because the study did not control for a number of potential confounding variables such as the use of water softeners, which would reduce the amount of barium and increase sodium levels, duration of exposure, or actual barium intakes. Several animal studies have examined potential cardiovascular end points following acute-, intermediate-, or chronic-duration exposures. Significant increases in systolic blood pressure were observed in rats exposed to 8.6 or 11 mg barium/kg/day for 1 or 4 months, respectively; no effect levels were 1.0 and 1.2 mg barium/kg/day. When the duration of exposure was longer (8-16 months), the LOAEL for increased blood pressure was 0.80 mg barium/kg/day and the NOAEL was 0.17 mg barium/kg/day. Depressed rates of cardiac contraction and cardiac conductivity and decreased cardiac ATP levels were observed in another group of rats exposed to 7.2 mg barium/kg/day. In contrast to the findings in this study, a second study could find no significant alterations in blood pressure were observed in rats exposed to up to 150 mg barium/kg/day in drinking water for 16 weeks; it should be noted that the second was conducted in uninephrectomized rats or Dahl salt-sensitive and salt-resistant rats. NTP (1994) also found no significant alterations in blood pressure, heart rate, or ECG readings in rats exposed to 180 mg barium/kg/day for 45 or 90 days. The low metal diet used in the first study may have influenced the study outcome. When evaluating the health effects of barium compounds, it is important to keep in mind that different barium compounds have different solubilities in water and body fluids and therefore serve as variable sources of the Ba2+ ion. The Ba2+ ion and the soluble compounds of barium (notably chloride, nitrate, and hydroxide) are generally highly toxic to humans and experimental animals. The insoluble barium compounds (notably sulfate) are inefficient sources of the Ba2+ ion and therefore are generally

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

nontoxic. Although barium carbonate is insoluble in water, barium ions would be released from ingested barium carbonate in the

Excessive repeated ingestions may cause hypoglycaemia (low levels of glucose in the blood stream) among susceptible individuals; this may result in muscular weakness, incoordination and mental confusion.

Very high doses given during feeding studies to rats and dogs produce central nervous system depression (although one-third of that produced by ethanol), haemolysis and insignificant kidney changes.

In humans propylene glycol is partly excreted unchanged in the urine and partly metabolised as lactic and pyruvic acid. Lactic acidosis may result.

Body content of titanium is presumed to be high (because titanium occupies fourth place in occurrence in the earth's surface) and is reported to be general in all organs of the body. Animal experiments have shown that dusts of titanium and several compounds exhibit only slight toxicity. Such toxic actions (limited to soluble titanium salts) may be related to an ability to inhibit the action of the enzyme tyrosinase on DOPA (3,4-dihydroxyphenylalanine). A further as yet unexplored mechanism may involve substitution by titanium for several metals (such as vanadium, iron, cobalt, nickel, and zinc) which perform essential biologic functions; all have a similar atomic radius

Skin Contact

The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either

- produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eve

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Chronic

There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

Long term exposure to the dusts of titanium and several of its compounds produces chronic lung disease (fibrosis) in animals. Radiological evidence exists amongst titanium dioxide workers suggesting chronic lung changes which resemble a slight form of silicosis. Workers chronically exposed to titanium or titanium dioxide dusts show a high incidence of chronic bronchitis (endobronchitis and peribronchitis). Early stages of this disease are characterised by impaired pulmonary respiration and ventilatory capacity and by reduced blood alkalinity. Cardiac changes characteristic of pulmonary disease (with hypertrophy of the right auricle) have also been observed amongst workers.

Titanium employed in implants has provoked immune responses which occur locally as metallosis and systemically as raised serum levels of activated T-lymphocytes. Some concern has been expressed about the potential for generating bone-resorbing mediators associated with titanium wear-debris.

The largest of the cohort studies was among white male production workers in the titanium dioxide industry in six European

Issue Date: 20/08/2021
Print Date: 24/08/2021

countries. The study indicated a slightly increased risk for lung cancer compared with the general population. However, there was no evidence of an exposure-response relationship within the cohort. No increase in the mortality rates for kidney cancer was found when the cohort was compared with the general population, but there was a suggestion of an exposure-response relationship in internal analyses. The other cohort studies, both of which were conducted in the USA, did not report an increased risk for lung cancer or cancer at any other site; no results for kidney cancer were reported, presumably because there were few cases

One population-based case-control study conducted in Montreal did not indicate an increased risk for lung or kidney cancer. In summary, the studies do not suggest an association between occupational exposure to titanium dioxide as it occurred in recent decades in western Europe and North America and risk for cancer.

All the studies had methodological limitations; misclassification of exposure could not be ruled out. None of the studies was designed to assess the impact of particle size (fine or ultrafine) or the potential effect of the coating compounds on the risk for lung cancer.

An increased incidence of lung adenomas in rats of both sexes and of cystic keratinising lesions, diagnosed as squamous cell carcinomas in female rats, was seen in animals subject to high doses of inhaled titanium dioxide. Intratracheal delivery of titanium dioxide in combination with benz[a]pyrene produced an increase in benign and malignant tumours of the larynx, trachea and lungs in hamsters.

Squamous cell carcinomas developed after exposure to 250 mg/m3 for 6 hours/day, 5 days/week for 2 years in rats; the type of carcinoma that developed was considered to be a unique experimentally induced tumour and to be of questionable relevance for extrapolation of the results to humans. Given the extremely high level of dust in the lungs, the carcinomas were postulated to be the result of saturation of the normal pulmonary clearance mechanisms. At 50 mg/m3, massive accumulations of dust-laden macrophages, foamy dust cells and free particles were considered indicative of such overload.

Workers exposed to barium compounds have been reported to show an increased incidence of hypertension, irritation of the respiratory system, and damage to the spleen, liver and bone marrow. Long term exposure to some barium compounds (especially inorganic species) may produce a condition known as baritosis, a form of benign pneumoconiosis. X-ray may show this when no other abnormal signs are present.

Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe. Pneumoconiosis is the accumulation of dusts in the lungs and the tissue reaction in its presence. Barium sulfate produces noncollagenous pneumoconiosis identified by minimal stromal reaction, consisting mainly of reticulin fibres, an intact alveolar architecture and is potentially reversible. Miners of ores containing barium sulfate do not show symptoms, abnormal physical signs, an incapacity to work, diminished lung function, an increased likelihood of developing pulmonary or other bronchial infections or other thoracic disease despite the fact that particulate matter may have been retained in the lungs for many years.

No changes in mortality were observed in rats chronically exposed to doses as high as 60 mg barium/kg/day as barium chloride in the drinking water. An increase in mortality, attributable to nephropathy, was observed in mice chronically exposed to 160 mg barium/kg/day as barium chloride in drinking water; the number of deaths was similar to controls in mice exposed to 75 mg barium/kg/day. In male mice exposed to 0.95 mg barium/kg/day as barium acetate in drinking water, a significant decrease in longevity (defined as average lifespan of the last five surviving animals) was observed; however, no significant differences in mean lifespan were observed. Similarly, lifespan was not significantly altered in female mice exposed to 0.95 mg barium/kg/day or male or female rats exposed to 0.7 mg barium/kg/day as barium acetate in drinking water.

The potential for barium to induce reproductive and developmental effects has not been well investigated. Decreases in the number of sperm and sperm quality and a shortened estrous cycle and morphological alterations in the ovaries were observed in rats exposed to 2.2 mg barium/m3 and higher in air for an intermediate duration. Interpretation of these data is limited by the poor reporting of the study design and results, in particular, whether the incidence was significantly different from controls. In general, oral exposure studies have not found morphological alterations in reproductive tissues of rats or mice exposed to 180 or 450 mg barium/kg/day, respectively, as barium chloride in drinking water for an intermediate duration. Additionally, no significant alterations in reproductive performance was observed in rats or mice exposed to 200 mg barium/kg/day as barium chloride in drinking water. Decreased pup birth weight and a nonsignificant decrease in litter size have been observed in the offspring of rats exposed to 180/200 mg barium/kg/day as barium chloride in drinking water prior to mating.

Several studies have examined the carcinogenic potential of barium following oral exposure and did not find significant increases in the tumour incidence.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Propylene glycol is though, by some, to be a sensitising principal following the regular use of topical creams by eczema patients. A study of 866 persons using a formulation containing propylene glycol in a patch test indicated that propylene glycol caused primary irritation in 16% of exposed individuals probably caused by dehydration. Undiluted propylene glycol was tested on 1556 persons in a 24 hour patch test. 12.5% showed reactions which were largely toxic (70%) or allergic in nature (30%). Reaction responses reached their maximum on the second day or later. Reactions were seasonal in nature ranging from 17.8% in winter to 9.2% in other seasons. In a patch-test using 25 standard allergens conducted on 500 individuals, propylene glycol ranked fourth in sensitising response. 84 subjects were patch tested using 100% propylene glycol. as well as 2% and 5% in water. With undiluted material, 15% demonstrated a reaction, with 40% of the reactions being allergic in nature and 60% being irritant. In dilute solutions 5 of 248 subjects exhibited a reaction.

Undiluted propylene glycol tested on the skin of man produced no irritation under open conditions but when applied under occlusive conditions, for 2 weeks, it produced severe erythema, oedema and vesicles, probably due to sweat retention and weak primary irritation.

Predictive contact skin sensitisation tests indicate that propylene glycol is an intermediate grade sensitiser with an index of 1% of tested subjects.

Groups of cats fed 5 gm/kg/day of propylene glycol for 14 weeks showed a significant dose-related increase in red blood cell Heinz body formation without any marked signs of haemolytic anaemia. The no-effect-level for cats without formation of Heinz

Issue Date: 20/08/2021 Print Date: 24/08/2021

bodies is 100-500 ml/kg. There is no evidence of anaemia or degenerative change. Groups of rats dosed orally with 0.5 or 10 mg/kg/day for 12 weeks had lowered food intake but no adverse effects on body weights. Erythrocytes were more fragile. Heinz bodies were not apparent.

eves Paint By Numbers	TOXICITY	IRRITATION	
seves Famili by Numbers	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (hamster) LD50: >=10000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
titanium dioxide	Inhalation(Rat) LC50; >2.28 mg/l4h ^[1]	Skin (human): 0.3 mg /3D (int)-mild *	
	Oral(Rat) LD50; >=2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irreversible damage)	
rylic acid homopolymer	Inhalation(Rat) LC50; >5.1 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral(Rat) LD50; 146-468 mg/kg ^[1]		
	TOXICITY	IRRITATION	
barium sulfate	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available	
	Oral(Mouse) LD50; >3000 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 100 mg - mild	
	Inhalation(Rat) LC50; >44.9 mg/L4h ^[2]	Eye (rabbit): 500 mg/24h - mild	
propylene glycol	Oral(Rat) LD50; >10400 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
		Skin(human):104 mg/3d Intermit Mod	
		Skin(human):500 mg/7days mild	
		Skin: no adverse effect observed (not irritating) ^[1]	
	TOXICITY	IRRITATION	
monoisobutanolamine	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Not Available	
	Oral(Mouse) LD50; ~2150 mg/kg ^[2]		
	TOXICITY	IRRITATION	
	dermal (rat) LD50: ~1600 mg/kg ^[1]	Eye (rabbit): 5 mg	
2-bromo-2-nitropropan- 1,3-diol	Inhalation(Rat) LC50; >0.12<1.14 mg/l4h ^[1]	Skin (human): 10 mg moderate	
1,0 0.01	Oral(Rat) LD50; 193 mg/kg ^[1]	Skin (rabbit): 500 mg/24h mild	
		Skin (rabbit): 80 mg moderate	
water	TOXICITY	IRRITATION	
water	Oral(Rat) LD50; >90000 mg/kg ^[2]	Not Available	
water Legend:	Oral(Rat) LD50; >90000 mg/kg ^[2] 1. Value obtained from Europe ECHA Registered Subst. Unless otherwise specified data extracted from RTECS	ances - Acute toxicity i	

* IUCLID

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

For titanium dioxide:

TITANIUM DIOXIDE

Humans can be exposed to titanium dioxide via inhalation, ingestion or dermal contact. In human lungs, the clearance kinetics of titanium dioxide is poorly characterized relative to that in experimental animals. (General particle characteristics and host factors that are considered to affect deposition and retention patterns of inhaled, poorly soluble particles such as titanium dioxide are summarized in the monograph on carbon black.) With regard to inhaled titanium dioxide, human data are mainly available from case reports that showed deposits of titanium dioxide in lung tissue as well as in lymph nodes. A single clinical study of oral ingestion of fine titanium dioxide showed particle size-dependent absorption by the gastrointestinal tract and large interindividual variations in blood levels of titanium dioxide. Studies on the application of sunscreens containing ultrafine titanium dioxide to healthy skin of human volunteers revealed that titanium dioxide particles only penetrate into the outermost layers of the stratum

Page 12 of 19

Reeves Paint By Numbers

Issue Date: 20/08/2021 Print Date: 24/08/2021

corneum, suggesting that healthy skin is an effective barrier to titanium dioxide. There are no studies on penetration of titanium dioxide in compromised skin.

Respiratory effects that have been observed among groups of titanium dioxide-exposed workers include decline in lung function, pleural disease with plaques and pleural thickening, and mild fibrotic changes. However, the workers in these studies were also exposed to asbestos and/or silica.

No data were available on genotoxic effects in titanium dioxide-exposed humans.

Many data on deposition, retention and clearance of titanium dioxide in experimental animals are available for the inhalation route. Titanium dioxide inhalation studies showed differences — both for normalized pulmonary burden (deposited mass per dry lung, mass per body weight) and clearance kinetics — among rodent species including rats of different size, age and strain. Clearance of titanium dioxide is also affected by pre-exposure to gaseous pollutants or co-exposure to cytotoxic aerosols. Differences in dose rate or clearance kinetics and the appearance of focal areas of high particle burden have been implicated in the higher toxic and inflammatory lung responses to intratracheally instilled vs inhaled titanium dioxide particles. Experimental studies with titanium dioxide have demonstrated that rodents experience dose-dependent impairment of alveolar macrophagemediated clearance. Hamsters have the most efficient clearance of inhaled titanium dioxide. Ultrafine primary particles of titanium dioxide are more slowly cleared than their fine counterparts.

Titanium dioxide causes varying degrees of inflammation and associated pulmonary effects including lung epithelial cell injury, cholesterol granulomas and fibrosis. Rodents experience stronger pulmonary effects after exposure to ultrafine titanium dioxide particles compared with fine particles on a mass basis. These differences are related to lung burden in terms of particle surface area, and are considered to result from impaired phagocytosis and sequestration of ultrafine particles into the interstitium. Fine titanium dioxide particles show minimal cytotoxicity to and inflammatory/pro-fibrotic mediator release from primary human alveolar macrophages in vitro compared with other particles. Ultrafine titanium dioxide particles inhibit phagocytosis of alveolar macrophages in vitro at mass dose concentrations at which this effect does not occur with fine titanium dioxide. In-vitro studies with fine and ultrafine titanium dioxide and purified DNA show induction of DNA damage that is suggestive of the generation of reactive oxygen species by both particle types. This effect is stronger for ultrafine than for fine titanium oxide, and is markedly enhanced by exposure to simulated sunlight/ultraviolet light.

Animal carcinogenicity data

Pigmentary and ultrafine titanium dioxide were tested for carcinogenicity by oral administration in mice and rats, by inhalation in rats and female mice, by intratracheal administration in hamsters and female rats and mice, by subcutaneous injection in rats and by intraperitoneal administration in male mice and female rats.

In one inhalation study, the incidence of benign and malignant lung tumours was increased in female rats. In another inhalation study, the incidences of lung adenomas were increased in the high-dose groups of male and female rats. Cystic keratinizing lesions that were diagnosed as squamous-cell carcinomas but re-evaluated as non-neoplastic pulmonary keratinizing cysts were also observed in the high-dose groups of female rats. Two inhalation studies in rats and one in female mice were negative. Intratracheally instilled female rats showed an increased incidence of both benign and malignant lung tumours following treatment with two types of titanium dioxide. Tumour incidence was not increased in intratracheally instilled hamsters and female mice.

In-vivo studies have shown enhanced micronucleus formation in bone marrow and peripheral blood lymphocytes of intraperitoneally instilled mice. Increased Hprt mutations were seen in lung epithelial cells isolated from titanium dioxide-instilled rats. In another study, no enhanced oxidative DNA damage was observed in lung tissues of rats that were intratracheally instilled with titanium dioxide. The results of most in-vitro genotoxicity studies with titanium dioxide were negative.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Polycarboxylates are of low toxicity by all exposure routes examined.

Homopolymers(P-AA) are of low acute toxicity to the rat (LD50 > 5 g/kg bw/d) and are not irritating to the rabbit's skin and, at the most, slightly irritating to the eye. Further P-AA has no sensitising potential.

The adverse effect after repeated inhalation dosing (91-d/rat) was a mild, reversible pulmonary irritation. This effect is considered as not substance related owing to the physical property of the respirable dust, which caused local and not systemic lung effects.

There was neither evidence for a genotoxic potential of PAA using a variety of genetic endpoints in-vitro and in-vivo,nor for developmental toxicity or reprotoxicity in the rat. Based upon the available data, it is considered that exposure to polycarboxylates does not imply any particular hazard to humans

The Cosmetic Ingredient Review (CIR) Expert Panel noted that these crosslinked alkyl acrylates are macromolecules that are not expected to pass through the stratum corneum of the skin, so significant dermal absorption is not expected. Therefore, topically applied cosmetics are not expected to result in systemic or reproductive and developmental toxicity or to have genotoxic or carcinogenic effects upon use.

The Panel noted that cosmetic products containing these ingredients are reportedly used around the eyes, on the lips, and on other mucous membranes. Thus, crosslinked alkyl acrylates could be absorbed systemically through the relatively moist,n stratum cornea of the conjunctiva, lips, and other mucous membranes, and through ingestion when applied to the lips. However, the Panel noted that any absorption through healthy intact mucous membranes is likely to be not significant, primarily because of the relatively large molecular sizes. Furthermore, the chemically inert nature of the polymers precludes degradation to smaller absorbable species.

Absorption of the polymers and their residual monomers in cosmetic products also would be limited after application to the lips or eye area based on the relatively small fractions of the applied products that might be inadvertently ingested or make direct contact with the conjunctiva.

The Carbomers (Carbopols) are synthetic, high molecular weight, nonlinear polymers of acrylic acid, cross-linked with a polyalkenyl polyether. The Carbomer polymers are used in cosmetics and emulsifying agents at concentrations up to 50%. Acute oral animal studies showed that Carbomers-910, -934, -934P, -940, and -941 have low toxicities when ingested. Rabbits showed

ACRYLIC ACID
HOMOPOLYMER

 Chemwatch: 5486-88
 Page 13 of 19
 Issue Date: 20/08/2021

 Version No: 2.1.14.9
 Print Date: 24/08/2021

Reeves Paint By Numbers

minimal skin irritation and zero to moderate eye irritation when tested with Carbomers-910 and -934. Subchronic feeding of rats and dogs with Carbomer-934 in the diet resulted in lower than normal body weights, but no pathological changes were observed. Dogs chronically fed Carbomer-934P manifested gastrointestinal irritation and marked pigment deposition within Kupffer cells of the liver. Clinical studies with Carbomers showed that these polymers have low potential for skin irritation and sensitization at concentrations up to 100%. Carbomer-934 demonstrated low potential for phototoxicity and photo-contact allergenicity. On the basis of the available information presented and as qualified in the report, it is concluded that the Carbomers are safe as cosmetic ingredients.

Little toxicity data is available for acrylic crosspolymers; the acute dermal and oral toxicity data that were found indicated that these ingredients are not very toxic. The little genotoxicity data that were available reported negative results in Ames tests. Carcinogenicity data were not found in the published literature for the polymers, but data were available for the monomers. In an alternative method study, acrylates/vinyl neodecanoate crosspolymer was predicted to be a non-irritant. The non-human studies reported no to slight irritation with undiluted and weak sensitization with 2% aq., acrylates/C10-30 alkyl acrylate crosspolymer, no irritation with acrylates crosspolymer at 30% in olive oil, and no irritation or sensitization with sodium acrylates crosspolymer-2 (concentration not specified). Mostly, human testing with undiluted acrylates/C10-30 alkyl acrylate crosspolymer, acrylates crosspolymer, and acrylates/ethylhexyl acrylate crosspolymer, up to 2.5% aq. acrylates/vinyl isodecanoate crosspolymer, 1% aq. dilutions of formulations containing 2% acrylates/vinyl neodecanoate crosspolymer, and formulations containing up to 2.6% lauryl methacrylate/glycol dimethacrylate crosspolymers do not indicate any dermal irritation or sensitization. The only exception was a weak irritant response noted during an intensified Shelanski human repeated insult patch test (HRIPT) with undiluted acrylates/C10-30 alkyl acrylate crosspolymer.

Alternative test methods for ocular irritation indicated that acrylates/vinyl isodecanoate crosspolymer and a formulation containing 1% lauryl methacrylate/glycol dimethacrylate crosspolymer are not likely ocular irritants. In studies using rabbits, undiluted acrylates/C10-30 alkyl acrylate crosspolymer produced minimal to moderate irritation, and it was considered a borderline irritant in unrinsed rabbit eyes. Acrylates crosspolymer, at 50% in olive oil, and sodium acrylates crosspolymer-2 did not appear to be ocular irritants in rabbit eyes. Two different risk assessments evaluating the carcinogenic endpoint for benzene that may be present in acrylates/ C10-30 alkyl acrylates crosspolymer resulted in different lifetime risk. One found that the risk was within the range associated with a 10exp 6 cancer risk, while the other reported a 20-fold greater risk.

Final Safety Assessment: Crosslinked Alkyl Acrylates as Used in Cosmetics. Nov 2011

Cosmetic Ingredient Review (CIR) Expert Panel

http://ntp.niehs.nih.gov/ntp/roc/nominations/2013/publiccomm/attachmentcir_508.pdf

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. Because of its low chronic oral toxicity, propylene glycol was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive.

Prolonged contact with propylene glycol is essentially non-irritating to the skin. Undiluted propylene glycol is minimally irritating to the eye, and can produce slight transient conjunctivitis (the eye recovers after the exposure is removed). Exposure to mists may cause eye irritation, as well as upper respiratory tract irritation. Inhalation of the propylene glycol vapours appears to present no significant hazard in ordinary applications. However, limited human experience indicates that inhalation of propylene glycol mists could be irritating to some individuals It is therefore recommended that propylene glycol not be used in applications where inhalation exposure or human eye contact with the spray mists of these materials is likely, such as fogs for theatrical productions or antifreeze solutions for emergency eye wash stations.

Propylene glycol is metabolised in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), and propionaldehyde (a potentially hazardous substance).

Propylene glycol shows no evidence of being a carcinogen or of being genotoxic.

Research has suggested that individuals who cannot tolerate propylene glycol probably experience a special form of irritation, but that they only rarely develop allergic contact dermatitis. Other investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema.

One study strongly suggests a connection between airborne concentrations of propylene glycol in houses and development of asthma and allergic reactions, such as rhinitis or hives in children

Another study suggested that the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly bedroom air, is linked to increased risk of developing numerous respiratory and immune disorders in children, including asthma, hay fever, eczema, and allergies, with increased risk ranging from 50% to 180%. This concentration has been linked to use of water-based paints and water-based system cleansers.

Patients with vulvodynia and interstitial cystitis may be especially sensitive to propylene glycol. Women suffering with yeast infections may also notice that some over the counter creams can cause intense burning. Post menopausal women who require the use of an eostrogen cream may notice that brand name creams made with propylene glycol often create extreme, uncomfortable burning along the vulva and perianal area. Additionally, some electronic cigarette users who inhale propylene glycol vapor may experience dryness of the throat or shortness of breath. As an alternative, some suppliers will put Vegetable Glycerin in the "e-liquid" for those who are allergic (or have bad reactions) to propylene glycol.

Adverse responses to intravenous administration of drugs which use PG as an excipient have been seen in a number of people, particularly with large dosages thereof. Responses may include "hypotension, bradycardia... QRS and T abnormalities on the ECG, arrhythmia, cardiac arrest, serum hyperosmolality, lactic acidosis, and haemolysis". A high percentage (12% to 42%) of directly-injected propylene glycol is eliminated/secreted in urine unaltered depending on dosage, with the remainder appearing in its glucuronide-form. The speed of renal filtration decreases as dosage increases, which may be due to propylene glycol's mild anesthetic / CNS-depressant -properties as an alcohol. In one case, intravenous administration of propylene glycol-suspended nitroglycerin to an elderly man may have induced coma and acidosis.

PROPYLENE GLYCOL

Page 14 of 19

Reeves Paint By Numbers

Issue Date: 20/08/2021 Print Date: 24/08/2021

Propylene glycol is an approved food additive for dog food under the category of animal feed and is generally recognized as safe for dogs with an LD50 of 9 mL/kg. The LD50 is higher for most laboratory animals (20 mL/kg)

Similarly, propylene glycol is an approved food additive for human food as well. The exception is that it is prohibited for use in

Similarly, propylene glycol is an approved food additive for human food as well. The exception is that it is prohibited for use in food for cats due to links to Heinz body anemia.

For tris(hydroxymethyl)aminomethane (TRIS AMINO; CAS 77-88-1) and its surrogates 2-amino-2-methyl-1,3-propanediol (AMPD; CAS 115-69-5) and monoisobutanolamine (AMP; CAS 124-68-5)

TRIS AMINO and the surrogate chemicals have displayed little if any toxicity to humans during their long history of use as human drugs and/or in personal care products and cosmetics. TRIS AMINO has found use as an IV drug for the management of acidosis in humans for many years and the toxicity of AMPD and AMP have been reviewed by the Cosmetic Ingredient Review Expert Panel which concluded that these materials are safe as used in cosmetic formulations up to 1%

Acute toxicity: Mammalian toxicity studies have displayed similar results. The oral LD50 value for TRIS AMINO is 5500 mg/kg in the mouse, and its surrogates range from 2150 to greater than 5000 mg/kg in the rat and mouse. TRIS AMINO was non-irritating to eyes when a 40% aqueous solution was applied to the eyes of rabbits (pH 10.4 for 0.1M aqueous solution). In contrast, 95% AMP in water was severely irritating to the eyes, presumably due to the severely alkaline pH of the test solution used (pH 11.3 for 0.1M aqueous solution); however, more neutral cosmetic formulations containing lower concentrations of AMP are only minimally irritating. There is no sensitisation data available for TRIS AMINO; however, based on the following data, TRIS AMINO is not expected to be a sensitiser. Laboratory animal test samples of AMP did not cause allergic skin reactions when tested in guinea pigs following topical or intradermal administration. In patch tests with humans, AMP and cosmetic formulations containing either AMP or AMPD were negative for dermal sensitisation.

MONOISOBUTANOLAMINE

Repeated dose toxicity: Repeated-dose mammalian toxicity studies conducted on TRIS AMINO and the two surrogate chemicals indicate that the compounds are generally well-tolerated at concentrations as high as 500 mg/kg/day via IV infusion for TRIS AMINO and ingestion of up to 3200 ppm in the rodent diet (250-750 mg/kg/day for rats and mice, estimated). A number of human clinical trials of the IV infusion of TRIS AMINO have also been successfully conducted. In all studies, the only target tissue, when observed at all, has been the liver with AMP. Human clinical studies with Keterolac(a major component of which is TRIS AMINO) have suggested that patients with decreased liver function not be given the drug over extended treatment periods based upon changes in several clinical chemistry parameters. Ingestion of relatively high dosages of AMP has caused liver histopathological changes in rats and dogs. The most significant toxicological activity has been a foetotoxic effect of AMP when ingested at relatively high levels by pregnant rats. Subsequent dermal exposure to comparable dosages failed to elicit a developmental effect in rats. Overall, there have been no consistently-noted observations or treatment-related findings among the numerous repeated-dose mammalian toxicity studies that have been conducted over at last 50 years on these compounds that would indicate long-term significant toxicity of either compound at typical human exposure levels. Reflective of these findings is the fact that both TRIS AMINO and AMP display similar patterns of excretion from the body, being primarily eliminated unchanged via the urine over a relatively short period of time. Further, no evidence of either direct reactivity or metabolism to reactive species toward genetic material has been observed. Genetic toxicity: Studies conducted on the TRIS AMINO and the surrogate substances in the presence or absence of mammalian metabolic enzymes have all been negative.

Formaldehyde generators (releasers) are often used as preservatives (antimicrobials, biocides, microbiocides). Formaldehyde may be generated following hydrolysis. The most widely used antimicrobial compounds function by releasing formaldehyde once inside the microbe cell. Some release detectable levels of formaldehyde into the air space, above working solutions, especially when pH has dropped.

Many countries are placing regulatory pressure on suppliers and users to replace formaldehyde generators.

Formaldehyde generators are a diverse group of chemicals that can be recognised by a small, easily detachable formaldehyde moiety, prepared by reacting an amino alcohol with formaldehyde ("formaldehyde-condensates"),

There is concern that when formaldehyde-releasing preservatives are present in a formulation that also includes amines, such as triethanolamine (TEA), diethanolamine (DEA), or monoethanolamine (MEA), nitrosamines can be formed,; nitrosamines are carcinogenic substances that can potentially penetrate skin.

2-BROMO-2-NITROPROPAN-1,3-DIOL One widely-discussed hypothesis states that formaldehyde-condensate biocides, such as triazines and oxazolidines, may cause an imbalance in the microbial flora of in-use metalworking fluids (MWFs). The hypothesis further asserts that this putative microbial imbalance favours the proliferation of certain nontuberculosis mycobacteria (NTM) in MWFs and that the subsequent inhalation of NTM-containing aerosols can cause hypersensitivity pneumonitis (HP), also known as extrinsic allergic alveolitis, in a small percentage of susceptible workers. Symptoms of HP include flu-like illness accompanied by chronic dyspnea, i.e., difficult or laboured respiration

According to Annex VI of the Cosmetic Directive 76/768/EC, the maximum authorised concentration of free formaldehyde is 0.2% (2000 ppm). In addition, the provisions of Annex VI state that,

All finished products containing formaldehyde or substances in this Annex and which release formaldehyde must be labelled with the warning "contains formaldehyde" where the concentration of formaldehyde in the finished product exceeds 0.05%. Formaldehyde-releasing preservatives have the ability to release formaldehyde in very small amounts over time. The use of formaldehyde-releasing preservatives ensures that the actual level of free formaldehyde in the products is always very low but at the same time sufficient to ensure absence of microbial growth. The formaldehyde reacts most rapidly with organic and inorganic anions, amino and sulfide groups and electron-rich groups to disrupt metabolic processes, eventually causing death of the organism.

Chemical with the aliphatic nitro group (-C-NO2) have been added to a list of DNA-reactive subgroups recognised by the National Toxicological Program (NTP, U.S. Dept Health and Human Services) for possible carcinogenic activity.

TITANIUM DIOXIDE &
ACRYLIC ACID
HOMOPOLYMER &
2-BROMO2-NITROPROPAN-1,3-DIOL

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent

Issue Date: **20/08/2021**Print Date: **24/08/2021**

	disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
TITANIUM DIOXIDE & BARIUM SULFATE & WATER	No significant acute toxicological data identified in literature search.
PROPYLENE GLYCOL & 2-BROMO-2-NITROPROPAN-1,3-DIOL	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

- 🗶 Data either not available or does not fill the criteria for classification
- ✓ Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Reeves Paint By Numbers	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	3.75-7.58mg/l	4
	BCF	1008h	Fish	<1.1-9.6	7
titanium dioxide	EC50	48h	Crustacea	1.9mg/l	2
	LC50	96h	Fish	1.85-3.06mg/l	4
	NOEC(ECx)	504h	Crustacea	0.02mg/l	4
	EC50	96h	Algae or other aquatic plants	179.05mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC10(ECx)	72h	Algae or other aquatic plants	0.03-0.031mg/l	2
acrylic acid homopolymer	EC50	72h	Algae or other aquatic plants	0.13-0.205mg/l	2
	LC50	96h	Fish	27mg/l	2
	EC50	48h	Crustacea	47mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	>=1.15mg/l	2
barium sulfate	EC50	72h	Algae or other aquatic plants	>1.15mg/l	2
parium sunate	1.050				2
	LC50	96h	Fish	>3.5mg/l	
	EC50	96h 48h	Fish Crustacea	>3.5mg/l 32mg/l	4
				- J	4
	EC50	48h	Crustacea	32mg/l	4
	EC50	48h Test Duration (hr)	Crustacea Species	32mg/l Value	4 Source
propylene glycol	Endpoint NOEC(ECx)	48h Test Duration (hr) 336h	Crustacea Species Algae or other aquatic plants	32mg/l Value <5300mg/l	Source
propylene glycol	Endpoint NOEC(ECx) EC50	Test Duration (hr) 336h 72h	Crustacea Species Algae or other aquatic plants Algae or other aquatic plants	32mg/l Value <5300mg/l 19300mg/l	Source 1 2
propylene glycol	Endpoint NOEC(ECx) EC50 LC50	48h Test Duration (hr) 336h 72h 96h	Crustacea Species Algae or other aquatic plants Algae or other aquatic plants Fish	32mg/l Value <5300mg/l 19300mg/l >10000mg/l	4 Source 1 2 2
propylene glycol	EC50 Endpoint NOEC(ECx) EC50 LC50 EC50	48h Test Duration (hr) 336h 72h 96h 48h	Species Algae or other aquatic plants Algae or other aquatic plants Fish Crustacea	32mg/l Value <5300mg/l 19300mg/l >10000mg/l >114.4mg/L	4 Source 1 2 2 4

Version No: **2.1.14.9**

Reeves Paint By Numbers

Issue Date: 20/08/2021 Print Date: 24/08/2021

	LC50	96h		Fish		100mg/l	1
	EC50	48h		Crustacea		193mg/l	1
	EC0(ECx)	48h		Crustacea		100mg/l	1
	Endpoint	Test Duration (hr)	Sp	ecies	Value		Source
	NOEC(ECx)	72h	Alç	gae or other aquatic plants	0.01mg	/I	2
2-bromo-2-nitropropan-	EC50	72h	Alç	gae or other aquatic plants	ts 0.05mg/l		2
1,3-diol	LC50	96h	Fis	sh	10.274-	-14.454mg/L	4
	EC50	48h	Cr	ustacea	1.1-3.52	2mg/L	4
	EC50	96h	Alç	gae or other aquatic plants	0.02-0.0	025mg/L	4
	Endpoint	Test Duration (hr)		Species		Value	Source
water	Not Available	Not Available		Not Available		Not Available	Not Available
Legend:	3. EPIWIN Sui	n 1. IUCLID Toxicity Data 2. Eur ite V3.12 (QSAR) - Aquatic Toxi atic Hazard Assessment Data 6	city Data (Est	imated) 4. US EPA, Ecotox data	abase - Aqua	tic Toxicity Da	ata 5.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
titanium dioxide	HIGH	HIGH
acrylic acid homopolymer	LOW	LOW
propylene glycol	LOW	LOW
monoisobutanolamine	LOW	LOW
2-bromo-2-nitropropan- 1,3-diol	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
titanium dioxide	LOW (BCF = 10)
acrylic acid homopolymer	LOW (LogKOW = 0.4415)
propylene glycol	LOW (BCF = 1)
monoisobutanolamine	LOW (BCF = 330)
2-bromo-2-nitropropan- 1,3-diol	LOW (LogKOW = -0.6408)

Mobility in soil

Ingredient	Mobility
titanium dioxide	LOW (KOC = 23.74)
acrylic acid homopolymer	HIGH (KOC = 1.201)
propylene glycol	HIGH (KOC = 1)
monoisobutanolamine	MEDIUM (KOC = 2.196)
2-bromo-2-nitropropan- 1,3-diol	HIGH (KOC = 1)

SECTION 13 Disposal considerations

Issue Date: **20/08/2021**Print Date: **24/08/2021**

Waste treatment methods

Product / Packaging

disposal

Version No: 2.1.14.9

▶ Containers may still present a chemical hazard/ danger when empty.

▶ Return to supplier for reuse/ recycling if possible.

Otherwise

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
titanium dioxide	Not Available
acrylic acid homopolymer	Not Available
barium sulfate	Not Available
propylene glycol	Not Available
monoisobutanolamine	Not Available
2-bromo-2-nitropropan- 1,3-diol	Not Available
water	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
titanium dioxide	Not Available
acrylic acid homopolymer	Not Available
barium sulfate	Not Available
propylene glycol	Not Available
monoisobutanolamine	Not Available
2-bromo-2-nitropropan- 1,3-diol	Not Available
water	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

titanium dioxide is found on the following regulatory lists

Issue Date: 20/08/2021 Print Date: 24/08/2021

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by

the IARC Monographs

acrylic acid homopolymer is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

barium sulfate is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

propylene glycol is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

monoisobutanolamine is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

2-bromo-2-nitropropan-1,3-diol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (acrylic acid homopolymer; barium sulfate; propylene glycol; monoisobutanolamine; 2-bromo-2-nitropropan-1,3-diol; water)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	No (acrylic acid homopolymer)
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	20/08/2021
Initial Date	20/08/2021

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks

Version No: 2.1.14.9

Reeves Paint By Numbers

Issue Date: **20/08/2021**Print Date: **24/08/2021**

in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.