Jasart Charcoal Pencils Jasco Pty Limited Chemwatch: **5531-84** Version No: **2.1** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements #### Chemwatch Hazard Alert Code: 1 Issue Date: **25/03/2022**Print Date: **04/04/2022**L.GHS.AUS.EN #### SECTION 1 Identification of the substance / mixture and of the company / undertaking #### **Product Identifier** | Product name | Jasart Charcoal Pencils | |-------------------------------|-------------------------| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Pencil components. Hazard is from pencil components. | |--------------------------|--| | | Use according to manufacturer's directions. | ## Details of the supplier of the safety data sheet | Registered company name | Jasco Pty Limited | |-------------------------|---| | Address | 1-5 Commercial Road Kingsgrove NSW 2208 Australia | | Telephone | +61 2 9807 1555 | | Fax | Not Available | | Website | www.jasco.com.au | | Email | sales@jasco.com.au | ## **Emergency telephone number** | Association / Organisation | Australian Poisons Centre | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|---------------------------|------------------------------| | Emergency telephone numbers | 13 11 26 (24/7) | +61 1800 951 288 | | Other emergency telephone numbers | Not Available | +61 2 9186 1132 | Once connected and if the message is not in your prefered language then please dial ${\bf 01}$ ## **SECTION 2 Hazards identification** ## Classification of the substance or mixture | Poisons Schedule | Not Applicable | | |--------------------|---|--| | Classification [1] | Serious Eye Damage/Eye Irritation Category 2B | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | #### Label elements | Hazard pictogram(s) | Not Applicable | |---------------------|----------------| | | | | Signal word | Warning | Issue Date: **25/03/2022**Print Date: **04/04/2022** ## Hazard statement(s) | AUH066 | Repeated exposure may cause skin dryness and cracking. | |--------|--| | H320 | Causes eye irritation. | ## Precautionary statement(s) Prevention | P264 | Wash all exposed external body areas thoroughly after handling. | |------|---| |------|---| ## Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | ## Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal Not Applicable ## **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---|-----------|----------------| | 9056-38-6 | <80 | charcoal, wood | | 1302-87-0 | <40 | <u>clays</u> | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | | ## **SECTION 4 First aid measures** | Description of first aid m | easures | |----------------------------|--| | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. In case of burns: Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth. DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury. DO NOT break blister or remove solidified material. Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain. For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth. DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances. Water may be given in small quantities if the person is conscious. Alcohol is not to be given under any circumstances. Reassure. Treat for shock by keeping the person warm and in a lying position. Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. | ## Page 3 of 14 Jasart Charcoal Pencils Issue Date: **25/03/2022**Print Date: **04/04/2022** #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** Sand, dry powder extinguishers or other inerts should be used to smother dust fires. At temperatures above 1500 C, carbon, graphite or graphene reacts with substances containing oxygen, including water and carbon dioxide. In case of intensely hot fires sand should be used to cover and isolate these materials. #### Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting Fire/Explosion Hazard Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters #### Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - ▶ Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - ► DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - ▶ Equipment should be thoroughly decontaminated after use. - ▶ Solid which exhibits difficult combustion or is difficult to ignite. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. - Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion. - A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people. - Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type. - Dry dust can also be charged electrostatically
by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - ▶ Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. - All movable parts coming in contact with this material should have a speed of less than 1-metre/sec. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. A fire in bulk finely divided carbon may not be obviously visible unless the material is disturbed and sparks appear. A straw broom may be useful to produce the disturbance. Explosion and Ignition Behaviour of Carbon Black with Air | Lower Limit for Explosion: | 50 g/m3 (carbon black in air) | |--------------------------------|-------------------------------| | Maximum Explosion Pressure: | 10 bar | | Maximum Rate of Pressure Rise: | 30-100 bar/sec | | Minimum Ignition Temperature: | 315 deg. C. | | Ignition Energy: | >1 kJ | | Glow Temperature: | 500 deg. C. (approx.) | Notes on Test Methods: Tests 1, 2 and 3 were conducted by Bergwerkeschaftliche Versuchstrecke, Dortmunde-Derne, using a 1 m3 vessel with two Chemwatch: 5531-84 Page 4 of 14 Issue Date: 25/03/2022 Version No: 2.1 Jasart Charcoal Pencils Print Date: 04/04/2022 chemical igniters having an intensity of 5000 W.S. Tests 1 and 2 results are confirmed by information in the Handbook of Powder Technology, Vol. 4 (P. Field) In Test 4, a modified Godbert-Greenwald furnace was used. See U.S. Bureau of Mines, Report 5624, 1960, p.5, "Lab Equipment and Test Procedures". Test 5 used a 1 m3 vessel with chemical igniters of variable intensity. Test 6 was conducted in a laboratory oven. Active glowing appeared after 3 minutes exposure. (European Committee for Biological Effects of Carbon Black) (2/84) Not Applicable #### **SECTION 6 Accidental release measures** ## Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | | 3 1 | |--------------|---| | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Use dry clean up procedures and avoid generating dust. Place in a suitable, labelled container for waste disposal. | | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling #### Precautions for safe handling #### NOTE: - Wet, activated carbon removes oxygen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or confined spaces where activated carbons might accumulate. - Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply. - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - ▶ Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, **DO NOT** eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. - Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions) - Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame. - Establish good housekeeping practices. - Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds. Chemwatch: 5531-84 Page 5 of 14 Issue Date: 25/03/2022 Version No: 2.1 Print Date: 04/04/2022 #### **Jasart Charcoal Pencils** - Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area. - Do not use air hoses for cleaning. - Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used. - ▶ Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition. - ▶ Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance. - Do not empty directly into flammable solvents or in the presence of flammable vapors. - The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C.. Use of oxygen-impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials. - ▶ Store under an inert gas, e.g. argon or nitrogen. - Store in original containers. - ► Keep containers securely sealed. - Store in a cool, dry area protected from environmental extremes. - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams). - Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities. #### Conditions for safe storage, including any incompatibilities #### Suitable container Other information - Glass container is suitable for laboratory quantities - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. ## For carbon powders: - Avoid oxidising agents, reducing agents. - ▶ Reaction with finely divided metals, bromates, chlorates, chloramine monoxide, dichlorine oxide, iodates, metal nitrates, oxygen difluoride, peroxyformic acid, peroxyfuroic acid and trioxygen difluoride may result in an exotherm with ignition or explosion. Less active forms of carbon will ignite or explode on suitably intimate contact with oxygen, oxides, peroxides, oxosalts, halogens, interhalogens and other oxidising species. - Explosive reaction with ammonium nitrate, ammonium perchlorate, calcium hypochlorite and iodine pentoxide may occur following heating. Carbon may react violently with nitric
acid and may be explosively reactive with nitrogen trifluoride at reduced temperatures. In the presence of nitrogen oxide, incandescence and ignition may occur. Finely divided or highly porous forms of carbon, exhibiting a high surface area to mass (up to 2000 m2/g) may function as unusually active fuels possessing both adsorptive and catalytic properties which accelerate the release of energy in the presence of oxidising substances. Dry metal-impregnated charcoal catalysts may generate sufficient static, during handling, to cause ignition. - Figraphite in contact with liquid potassium, rubidium or caesium at 300 deg. C. produces intercalation compounds (C8M) which ignite in air and may react explosively with water. The fusion of powdered diamond and potassium hydroxide may produce explosive decomposition. - Activated carbon, when exposed to air, represents a potential fire hazard due to a high surface area and adsorptive capacity. Freshly prepared material may ignite spontaneously in the presence of air especially at high humidity. Spontaneous combustion in air may occur at 90-100 deg. C. The presence of moisture in air facilitates the ignition. Drying oils and oxidising oils promote spontaneous heating and ignition; contamination with these must be avoided. Unsaturated drying oils (linseed oil etc.) may ignite following adsorption owing to an enormous increase in the surface area of oil exposed to air; the rate of oxidation may also be catalysed by metallic impurities in the carbon. A similar, but slower effect occurs on fibrous materials such as cotton waste. Spontaneous heating of activated carbon is related to the composition and method of preparation of the activated carbon. Free radicals, present in charcoal, are responsible for autoignition. Self-heating and autoignition may also result from adsorption of various vapours and gases (especially oxygen). For example, activated carbon auto- ignites in flowing air at 452-518 deg. C.; when the base, triethylenediamine, is adsorbed on the carbon (5%) the autoignition temperature is reduced to 230-260 deg. C.. An exotherm is produced at 230-260 deg. C., at high flow rates of air, although ignition did not occur until 500 deg. C.. Mixtures of sodium borohydride with activated carbons, in air, promote the oxidation of sodium borohydride, producing a self-heating reaction that may result in the ignition of charcoal and in the production of hydrogen through thermal decomposition of the borohydride. ## Storage incompatibility Issue Date: 25/03/2022 Print Date: 04/04/2022 ## **SECTION 8 Exposure controls / personal protection** #### **Control parameters** Occupational Exposure Limits (OEL) **INGREDIENT DATA** Not Available #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------------|---------------|---------------|---------------| | Jasart Charcoal Pencils | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |----------------|---------------|---------------| | charcoal, wood | Not Available | Not Available | | clays | Not Available | Not Available | #### **MATERIAL DATA** #### For kaolin: Kaolin dust appears to have fibrogenic potential even in the absence of crystalline silica. Kaolinosis can exist as simple and complicated forms with the latter often associated with respiratory symptoms. Crystalline silica enhances the severity of the pneumoconiosis. The TLV-TWA for carbon black is recommended to minimise complaints of excessive dirtiness and applies only to commercially produced carbon blacks or to soots derived from combustion sources containing absorbed polycyclic aromatic hydrocarbons (PAHs). When PAHs are present in carbon black (measured as the cyclohexane-extractable fraction) NIOSH has established a REL-TWA of 0.1 mg/m3 and considers the material to be an occupational carcinogen. The NIOSH REL-TWA was "selected on the basis of professional judgement rather than on data delineating safe from unsafe concentrations of PAHs". This limit was justified on the basis of feasibility of measurement and not on a demonstration of its safety. #### **Exposure controls** Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air. Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability.[Linde] Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Appropriate engineering controls Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s
(100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s
(200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | Chemwatch: 5531-84 Page 7 of 14 Issue Date: 25/03/2022 Version No: 2.1 Print Date: 04/04/2022 #### **Jasart Charcoal Pencils** 3: Intermittent, low production. 3: High production, heavy use 4: Small hood-local control only 4: Large hood or large air mass in motion Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection ## Eye and face protection Safety glasses with side shields. Chemical goggles. ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection Hands/feet protection See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore
to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - ▶ polychloroprene. - nitrile rubber. - butvl rubber. - If Iluorocaoutchouc. - polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. Page 8 of 14 Issue Date: 25/03/2022 Print Date: 04/04/2022 **Jasart Charcoal Pencils** | Body protection | See Other protection below | |------------------|--| | Other protection | Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1 | - | PAPR-P1 | | тр т т т т | Air-line* | - | - | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | * - Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - · The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - \cdot Use approved positive flow mask if significant quantities of dust becomes airborne. - · Try to avoid creating dust conditions. Class P2 particulate filters are used for protection against mechanically and thermally generated particulates or both. P2 is a respiratory filter rating under various international standards, Filters at least 94% of airborne particles Suitable for: - · Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing. - · Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke. - · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS ## **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Dark grey to black pencil lead with negligible odour, immiscible in water. | | | |--|--|---|----------------| | | | | | | Physical state | Solid | Relative density (Water = 1) | 2.20-2.5 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Applicable | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Applicable | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | Page 9 of 14 Issue Date: 25/03/2022 Print Date: 04/04/2022 | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | |---------------------------|----------------|--------------------------------------|----------------| | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (Not
Available%) | Not Applicable | | Vapour density (Air = 1) | Not Applicable | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** individual. #### Information on toxicological effects Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Although carbon itself has no toxic action, associated impurities may be toxic. Iodine is often found as an impurity and air-borne Inhalation of dusts,
generated by the material during the course of normal handling, may be damaging to the health of the carbon dusts, as a result, may produce irritation of the mucous membranes, the eyes, and skin. Symptoms of exposure may include coughing, irritation of the nose and throat and burning of the eyes. #### Ingestion Inhaled The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Ingestion of finely divided carbon may produce gagging and constipation. Aspiration does not appear to be a concern as the material is generally regarded as inert and is often used as a food additive. Ingestion may produce a black stool ## **Skin Contact** The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ## Eye Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Symptoms of exposure by the eye to carbon particulates include irritation and a burning sensation. Following an industrial explosion, fine particles become embedded in the cornea and conjunctiva resulting in an inflammation which persisted for 2-3 weeks. Some particles remained permanently producing a punctate purplish-black discolouration. ## Chronic Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. The health hazards associated with bentonite, kaolin, and common clay, which are commercially important clay products, as well as the related phyllosilicate minerals montmorillonite, kaolinite, and illite, have an extensive literature. Fibrous clay minerals, such ## Page 10 of 14 Issue Date: 25/03/2022 Print Date: 04/04/2022 as sepiolite, attapulgite, and zeolites, have a separate literature. The biological effects of clay minerals are influenced by their mineral composition and particle size. The decreasing rank order of the potencies of quartz, kaolinite, and montmorillonite to produce lung damage is consistent with their known relative active surface areas and surface chemistry. Clays are chemically all described as aluminosilicates; these are further classified as bentonite, kaolin and common clays. Bentonite is a rock formed of highly colloidal and plastic clays composed mainly of montmorillonite, a clay mineral of the smectite Kaolin or china clay is a mixture of different minerals. Its main component is kaolinite; in addition, it frequently contains quartz, mica, feldspar, illite, and montmorillonite. The main components of common clay and shale are illite and chlorite. Illite is also a component of ball clays. Illite closely From the limited data available from studies on bentonite-exposed persons, retained montmorillonite appears to effect only mild nonspecific tissue changes, which are similar to those that have been described in the spectrum of changes of the "small airways mineral dust disease" (nodular peribronchiolar dust accumulations containing refractile material [montmorillonite] in association with limited interstitial fibrosis). In some of the studies, radiological abnormalities have also been reported Long-term occupational exposures to bentonite dust may cause structural and functional damage to the lungs. However, available data are inadequate to conclusively establish a dose-response relationship or even a cause-and-effect relationship due to limited information on period and intensity of exposure and to confounding factors, such as exposure to silica and tobacco Long-term exposure to kaolin may lead to a relatively benign pneumoconiosis, in an exposure-related fashion. known as kaolinosis. Deterioration of lung function has been observed only in cases with prominent radiological alterations. Based on data from china clay workers in the United Kingdom, it can be very roughly estimated that kaolin is at least an order of magnitude less potent than quartz.. Clearcut deterioration of respiratory function and related symptoms have been reported only in cases with prominent radiological findings. The composition of the clay - i.e., quantity and quality of minerals other than kaolinite — is an important determinant of the effects. Bentonite, kaolin, and other clays often contain quartz, and exposure to quartz is causally related to silicosis and lung cancer. Statistically significant increases in the incidence of or mortality from chronic bronchitis and pulmonary emphysema have been reported after exposure to quartz. The removal of clay particles from the lungs takes place by solubilisation in situ and by physical clearance. In humans, there was a rapid initial clearance of 8% and 40% of aluminosilicate particles that were, respectively, 1.9 and 6.1 um in aerodynamic diameter from the lung region over 6 days. Thereafter, 4% and 11% of the two particle sizes were removed following a halftime of 20 days, and the rest with half-times of 330 and 420 days. Ultrafine particles (<100 nm) have a high deposition in the nasal area; they can penetrate the alveolar/capillary barrier. Epidemiological studies have indicated an increase in morbidity and mortality associated with an increase in airborne particulate matter, particularly in the ultrafine size range An important determinant of the toxicity of clays is the content of quartz. The presence of quartz in the clays studied hampers reliable independent estimation of the fibrogenicity of other components of clays. Single intratracheal injection into rodents of bentonite and montmorillonite with low content of quartz produced dose- and particle size-dependent cytotoxic effects, as well as transient local inflammation, the signs of which included oedema and, consequently, increased lung weight. After high doses of intratracheal kaolin (containing 8-65% quartz), fibrosis has been described in some studies, whereas at lower kaolin doses, no fibrosis has been observed in the few available studies. There are limited data on the effects of multiple exposures of experimental animals to montmorillonite or bentonite. Mice maintained on diets containing 10% or 25% bentonite but otherwise adequate to support normal growth displayed slightly reduced growth rates, whereas mice maintained on a similar diet with 50% bentonite showed minimal growth and developed fatty livers and eventually fibrosis of the liver and benign hepatomas. In vitro studies of the effects of bentonite on a variety of mammalian cell types usually indicated a high degree of cytotoxicity. Concentrations below 1.0 mg/ml of bentonite and montmorillonite particles less than 5 um in diameter caused membrane damage and even cell lysis, as well as functional changes in several types of cells. No adequate studies are available on the carcinogenicity of bentonite. In an inhalation study and in a study using intrapleural injection, kaolin did not induce tumours in rats. No studies are available on the genotoxicity of clays. Single, very limited studies did not demonstrate developmental toxicity in rats after oral exposure to bentonite or kaolin. Chronic dust inhalation of kaolin, as experienced in mineral extraction, has caused kaolinosis with heavy lung marking, emphysema, and nodular pneumoconiosis. Evidence of kaolinosis (pneumoconiosis) was found in 9% of 553 Cornish china clay workers who had been exposed to kaolin dust for periods exceeding 5 years, whereas no kaolinosis was observed in workers exposed for less than 5 years. Workers in more heavily exposed jobs of milling, bagging and loading showed a prevalence of kaolinosis rising from 6% in those within between 5 and 15 years exposure to 23% in those exposed for more than 15 years. Workers intermittently and less heavily exposed in the older, outdated drying plants required 25 years of massive exposure before reaching the highest prevalence of 17%. Massive fibrosis was seen in four workers, and six workers needed antituberculosis chemotherapy. Preventative measures instituted include preemployment chest examination and approaches to the problem of dust control. Sheer, G.; Brit. Jnl. Ind. Med. 21, pp 218-225, 1964 Some clay minerals can dangerous because of their limited
solubility in the lung, reactivity, small particle size, and fibrous habit. Fibrous clays of the palygorskite group, such as attapulgite (also known as palygorskite), halloysite and sepiolite, are used in a variety of applications which may lead to inhalation exposure. The fibrous crystals are similar in structure to the amphibole The pathogenicity of sepiolite and palygorskite appears to be related to geological formation conditions since these determine fibre length and particle crystallinity. In vivo and in vitro studies indicated that, in some cases, sepiolite and palygorskite could be dangerous for human health. Health hazards depend mostly on the type of deposit and its geological formation conditions, which determine fibre length and particle crystallinity. Epidemiological studies of sepiolite and palygorskite workers showed that exposure to sepiolite-bearing dust does not increase the risk of pulmonary disease. There is no evidence of pleural plaque and no reported mesothelioma. The epidemiological data on the pathogenicity of sepiolite, both in in vivo studies with different methods of administration #### Page 11 of 14 **Jasart Charcoal Pencils** Issue Date: **25/03/2022**Print Date: **04/04/2022** (inhalation, intrapleural injection, and intraperitoneal inoculation) and in *in vitro* studies produce results which are consistently negative, showing a low intrinsic biological activity and an absence of exposure-related diseases. A Spanish study of 210 sepiolite showed those with greatest exposure to have increasing reduction in lung function and capacity. Radiographic results did not correlate with decreased lung function. A single cohort study of attapulgite miners and millers is available. It shows a small excess of mortality from lung cancer and stomach cancer but no indications of any exposure-response for either cancer. In one inhalation study in rats using sepiolite in which all fibres were shorter than 6 um, no significant increase in tumour incidence was found. In one study by intrapleural injection, sepiolite with a fibre length ranging 1-100 um, induced pleural mesotheliomas. In similar studies by intrapleural injection using fibres with lengths less than 6 um, no increase in tumour incidence were observed. In two studies in rats, intraperitoneal injection of sepiolite, using samples, in which 0.9% of the fibres had lengths greater than >5 um, no significant increases in the incidences of abdominal tumours were found. In one study in mice by intraperitoneal injection, sepiolite with fibre length ranging from 1-100 um produced a small increase in the incidence of peritoneal mesotheliomas Intrapleural tests with sepiolite in rats found no increased incidence of tumours. Similar results were obtained with rats inhaling sepiolite and palygorskite. These minerals did not produce fibrosis but only an interstitial reaction similar to that caused by nuisance dust. In one inhalation study in rats, using attapulgite from Leicester, UK, in which about 20% of the fibres were longer than 6 um, bronchiolar hyperplasia and a few benign and malignant alveolar tumours and mesotheliomas were observed. The same sample induced a high incidence of pleural mesotheliomas in rats after intrapleural administration. One attapulgite sample from Torrejon, Spain, in which 0.5% of the fibres were longer than 6 um produced significant increase in the incidence of pleural mesotheliomas after intrapleural injection. In rats, intraperitoneal injection of attapulgite, in which about 30% of the fibres were longer than 5 um, produced a high incidence of malignant abdominal tumours In vivo studies of palygorskite suggested that most palygorskite-bearing dusts are mildly active in the lung, though some samples can be very active. In one study sepiolite and palygorskite, containing a significant number of fibres greater than 5-6 mm in length, produced mesothelioma. In another study an intraperitoneal injection study with a sepiolite caused a high incidence of tumours; this sample of sepiolite was classified as "probably carcinogenic. This sepiolite was from a geological deposit in Finland. The mineral was formed under hydrothermal conditions, allowing for the development of a high degree of crystallinity. The biological activity of sedimentary and non-sedimentary sepiolites with different crystallisation grade and particle length has been subject to review Well-crystallised sepiolite with long particles showed strong cytotoxic and genotoxic effects. A relationship, between fibre length and cytotoxicity, for sepiolite and palygorskite, seems to exist. In other non-erythrocyte cell types palygorskite is non-genotoxic and, at most, only slightly cytotoxic. Both sepiolite and palygorskite were found to lyse erythrocytes i.e they are haemolytic. In vitro experiments indicated palygorskite is as haemolytic as chrysotile. The edge surfaces and silanol groups of the minerals are important to the lysing process, whereas their elongate particle morphology appears to be irrelevant. It has been reported that the in vitro activity of palygorskite varies between samples. Among nine palygorskites, with varied surface characteristics, researchers found a corresponding range in haemolytic activity. It is suggested that samples with fibres >5 mm in length were harmful, whereas materials consisting entirely of short fibres were not Aerosols of attapulgite and sepiolite were produced experimentally and airborne particles examined with the transmission electron microscope. Although the particles appeared to be compact conglomerates of non-fibrous material, many discrete fibres were found in the lungs of rats which had been exposed to them. This indicates that the particles contain a fibrous component which is released *in vivo*. This effect was reproduced by treating aqueous suspensions of particles by either hand shaking or sonication. It would appear that microscopical examination of an airborne dust alone may fail to provide an indication of a potential 'fibre hazard'. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. | | TOXICITY | IRRITATION | |-------------------------|---|---------------| | Jasart Charcoal Pencils | Not Available | Not Available | | | TOXICITY | IRRITATION | | charcoal, wood | Not Available | Not Available | | clays | TOXICITY | IRRITATION | | | Not Available | Not Available | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | Jasart Charcoal Pencils & | |---------------------------| | CHARCOAL, WOOD & | | CLAYS | No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |---------------------------|---|-----------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | Issue Date: 25/03/2022 Print Date: 04/04/2022 | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | |-----------------------------------|----------|--------------------------|---| | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification ✓ – Data available to make classification ## **SECTION 12 Ecological information** ## **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------------|--|--------------------|---------------|------------------|------------------| | Jasart Charcoal Pencils | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | charcoal, wood | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | clays | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Bentonite and kaolin have low toxicity to aquatic species, a large number of which have been tested DO NOT discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | ## **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging
disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. ## **SECTION 14 Transport information** ## **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Issue Date: **25/03/2022**Print Date: **04/04/2022** Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |----------------|---------------| | charcoal, wood | Not Available | | clays | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |----------------|---------------| | charcoal, wood | Not Available | | clays | Not Available | #### **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture #### charcoal, wood is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) #### clays is found on the following regulatory lists Not Applicable #### **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | No (charcoal, wood; clays) | | Canada - DSL | No (charcoal, wood) | | Canada - NDSL | No (clays) | | China - IECSC | No (charcoal, wood) | | Europe - EINEC / ELINCS /
NLP | No (charcoal, wood; clays) | | Japan - ENCS | No (clays) | | Korea - KECI | No (clays) | | New Zealand - NZIoC | No (charcoal, wood) | | Philippines - PICCS | Yes | | USA - TSCA | No (clays) | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | No (charcoal, wood; clays) | | Russia - FBEPH | No (charcoal, wood; clays) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | ## **SECTION 16 Other information** | Revision Date | 25/03/2022 | |---------------|------------| | Initial Date | 25/03/2022 | Version No: 2.1 #### **Jasart Charcoal Pencils** Issue Date: **25/03/2022**Print Date: **04/04/2022** | Version | Date of Update | Sections Updated | |---------|----------------|------------------| | 2.1 | 25/03/2022 | Use | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.