

Jasart Byron Kids Wash Paint Jasco Pty Limited

Jasco Pty Limited
Chemwatch: 5475-85

Version No: 3.1.9.8

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **15/07/2021**Print Date: **15/07/2021**L.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	Jasart Byron Kids Wash Paint
Chemical Name	Not Applicable
Synonyms	0069040 - JASART BYRON KIDS WASH PAINT 75ML WHT; 0069050 - JASART BYRON KIDS WASH PAINT 75ML YELLOW; 0069060 - JASART BYRON KIDS WASH PAINT 75ML RED; 0069060 - JASART BYRON KIDS WASH PAINT 75ML RED; 0069080 - JASART BYRON KIDS WASH PAINT 75ML PURPLE; 0069090 - JASART BYRON KIDS WASH PAINT 75ML BLUE; 0069100- JASART BYRON KIDS WASH PAINT 75ML GREEN; 0069110- JASART BYRON KIDS WASH PAINT 75ML BLK; 0069120 - JASART BYRON KIDS WASH PAINT 250ML WHT; 0069130 - JASART BYRON KIDS WASH PAINT 250ML YELLOW; 0069140 - JASART BYRON KIDS WASH PAINT 250ML ORANGE; 0069150 - JASART BYRON KIDS WASH PAINT 250ML PURPLE; 0069170 - JASART BYRON KIDS WASH PAINT 250ML BLUE; 0069180 - JASART BYRON KIDS WASH PAINT 250ML GREEN; 0069190 - JASART BYRON KIDS WASH PAINT 250ML BLUE; 0083230 - JASART BYRON KIDS WASH PAINT 75ML SET 5 PRIMARY

Relevant identified uses of the substance or mixture and uses advised against

Not Applicable

Not Available

Details of the supplier of the safety data sheet

Chemical formula

Other means of

identification

Registered company name	Jasco Pty Limited
Address	1-5 Commercial Road Kingsgrove NSW 2208 Australia
Telephone	+61 2 9807 1555
Fax	Not Available
Website	www.jasco.com.au
Email	sales@jasco.com.au

Emergency telephone number

Association / Organisation	Australian Poisons Centre
Emergency telephone numbers	13 11 26 (24/7)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification [1]	ye Irritation Category 2A, Specific target organ toxicity - repeated exposure Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Issue Date: **15/07/2021**Print Date: **15/07/2021**

Hazard pictogram(s)

Signal word

Warning

Hazard statement(s)

H319	Causes serious eye irritation.	
H373	May cause damage to organs through prolonged or repeated exposure.	

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P314	Get medical advice/attention if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1332-58-7	<20	kaolin
13463-67-7	<5	titanium dioxide
6410-26-0	<5	C.I. Pigment Red 21
3520-72-7	<5	C.I. Pigment Orange 13
56-81-5	<5	glycerol
Not Available	balance	Ingredients determined not to be hazardous
Not Available		includes
7732-18-5	>60	<u>water</u>
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available		

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- ▶ Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Chemwatch: 5475-85 Page 3 of 18 Issue Date: 15/07/2021 Version No: 3.1.9.8 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

Periodic medical surveillance should be carried out on persons in occupations exposed to the manufacture or bulk handling of the product and this should include hepatic function tests and urinalysis examination. [ILO Encyclopaedia]

SECTION 5 Firefighting measures

Extinguishing media

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.

In such an event consider:

- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Produce and the substrate of mixture		
Fire Incompatibility	None known.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) nitrogen oxides (NOx) metal oxides other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. 	
HAZCHEM	Not Applicable	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Chemwatch: 5475-85 Page 4 of 18 Issue Date: 15/07/2021 Version No: 3.1.9.8 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. ▶ Control personal contact with the substance, by using protective equipment. **Minor Spills** Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water course. ▶ Stop leak if safe to do so. **Major Spills** ► Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. ▶ Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- Toolugions for sure name	Todations for sale nationing	
Safe handling	 DO NOT allow clothing wet with material to stay in contact with skin Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. 	
Other information	 Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. 	

Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. 	
Storage incompatibility	 Avoid reaction with oxidising agents, bases and strong reducing agents. Avoid strong acids, acid chlorides, acid anhydrides and chloroformates. 	

▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material	TWA	STEL	Peak	Notes
354.55	iiigi oaloiit	name		0.22	1 oun	110.00

Version No: **3.1.9.8**

Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	kaolin	Kaolin	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	titanium dioxide	Titanium dioxide	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	glycerol	Glycerin mist	10 mg/m3	Not Available	Not Available	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
titanium dioxide	30 mg/m3	330 mg/m3	2,000 mg/m3
glycerol	45 mg/m3	180 mg/m3	1,100 mg/m3

Ingredient	Original IDLH	Revised IDLH
kaolin	Not Available	Not Available
titanium dioxide	5,000 mg/m3	Not Available
C.I. Pigment Red 21	Not Available	Not Available
C.I. Pigment Orange 13	Not Available	Not Available
glycerol	Not Available	Not Available
water	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
C.I. Pigment Red 21	С	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)	
C.I. Pigment Orange 13	С	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Chemwatch: 5475-85 Page 6 of 18
Version No: 3.1.9.8

Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

Chemwatch: 5475-85 Version No: 3.1.9.8

Issue Date: 15/07/2021 Print Date: 15/07/2021 **Jasart Byron Kids Wash Paint**

Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Jasart Byron Kids Wash Paint

Material	СРІ
BUTYL	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
PVA	С
VITON	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = AgriculturalMercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Various colored liquid ointment.			
Physical state	Liquid	Relative density (Water = 1)	Not Available	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	9-10	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Available	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	

Chemwatch: **5475-85** Page 8 of 18 Issue Date: 15/07/2021 Version No: 3.1.9.8 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicolog	ical effects
Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
	Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
Skin Contact	Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	On the basis of epidemiological data, it has been concluded that prolonged inhalation of the material, in an occupational setting, may produce cancer in humans. Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure. Harmful: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Many azo dyes have been found to be carcinogenic in laboratory animals, affecting the liver, urinary bladder and intestines. Specific toxicity effects in humans have not been established but some dyes are known to be mutagenic. The simplest azo dyes, which raise concern, have an exocyclic amino-group that is the key to any carcinogenicity for it is this

 Chemwatch: 5475-85
 Page 9 of 18
 Issue Date: 15/07/2021

 Version No: 3.1.9.8
 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

group which undergoes biochemical N-oxidation and further reaction to reactive electrophiles. The DNA adducts formed by covalent binding through activated nitrogen have been identified. However not all azo compounds possess this activity and delicate alterations to structure vary the potential of carcinogenicity / acid, reduces or eliminates the effect. Complex azo dyes consisting of more than one azo (N=N) linkage may be metabolised to produce complexed carcinogenic aromatic amines such as benzidine

Benzidine and its metabolic derivatives have been detected in the urine of workers exposed to Direct azo dyes. An epidemiological study of silk dyers and painters with multiple exposures to benzidine based and other dyes indicate a strong association with bladder cancer.

Most organic azo dyes are potential skin sensitisers, the most important of which are para-phenylenediamine and its analogs. Water soluble azo dyes are more likely to cause clinical sensitisation than insoluble dyes. In addition to allergic eczematous contact dermatitis, color developing solutions have caused lichen planus like eruptions

The health hazards associated with bentonite, kaolin, and common clay, which are commercially important clay products, as well as the related phyllosilicate minerals montmorillonite, kaolinite, and illite, have an extensive literature. Fibrous clay minerals, such as sepiolite, attapulgite, and zeolites, have a separate literature.

The biological effects of clay minerals are influenced by their mineral composition and particle size. The decreasing rank order of the potencies of quartz, kaolinite, and montmorillonite to produce lung damage is consistent with their known relative active surface areas and surface chemistry.

Clays are chemically all described as aluminosilicates; these are further classified as bentonite, kaolin and common clays. Bentonite is a rock formed of highly colloidal and plastic clays composed mainly of montmorillonite, a clay mineral of the smectite group.

Kaolin or china clay is a mixture of different minerals. Its main component is kaolinite; in addition, it frequently contains quartz, mica, feldspar, illite, and montmorillonite.

The main components of common clay and shale are illite and chlorite. Illite is also a component of ball clays. Illite closely resembles micas.

From the limited data available from studies on bentonite-exposed persons, retained montmorillonite appears to effect only mild nonspecific tissue changes, which are similar to those that have been described in the spectrum of changes of the "small airways mineral dust disease" (nodular peribronchiolar dust accumulations containing refractile material [montmorillonite] in association with limited interstitial fibrosis). In some of the studies, radiological abnormalities have also been reported

Long-term occupational exposures to bentonite dust may cause structural and functional damage to the lungs. However, available data are inadequate to conclusively establish a dose-response relationship or even a cause-and-effect relationship due to limited information on period and intensity of exposure and to confounding factors, such as exposure to silica and tobacco

Long-term exposure to kaolin may lead to a relatively benign pneumoconiosis, in an exposure-related fashion. known as kaolinosis. Deterioration of lung function has been observed only in cases with prominent radiological alterations. Based on data from china clay workers in the United Kingdom, it can be very roughly estimated that kaolin is at least an order of magnitude less potent than quartz.. Clearcut deterioration of respiratory function and related symptoms have been reported only in cases with prominent radiological findings.

The composition of the clay - i.e., quantity and quality of minerals other than kaolinite — is an important determinant of the effects. Bentonite, kaolin, and other clays often contain quartz, and exposure to quartz is causally related to silicosis and lung cancer. Statistically significant increases in the incidence of or mortality from chronic bronchitis and pulmonary emphysema have been reported after exposure to quartz.

The removal of clay particles from the lungs takes place by solubilisation in situ and by physical clearance.

In humans, there was a rapid initial clearance of 8% and 40% of aluminosilicate particles that were, respectively, 1.9 and 6.1 um in aerodynamic diameter from the lung region over 6 days. Thereafter, 4% and 11% of the two particle sizes were removed following a halftime of 20 days, and the rest with half-times of 330 and 420 days.

Ultrafine particles (<100 nm) have a high deposition in the nasal area; they can penetrate the alveolar/capillary barrier. Epidemiological studies have indicated an increase in morbidity and mortality associated with an increase in airborne particulate matter, particularly in the ultrafine size range

An important determinant of the toxicity of clays is the content of quartz. The presence of quartz in the clays studied hampers reliable independent estimation of the fibrogenicity of other components of clays.

Single intratracheal injection into rodents of bentonite and montmorillonite with low content of quartz produced dose- and particle size-dependent cytotoxic effects, as well as transient local inflammation, the signs of which included oedema and, consequently, increased lung weight. After high doses of intratracheal kaolin (containing 8-65% quartz), fibrosis has been described in some studies, whereas at lower kaolin doses, no fibrosis has been observed in the few available studies.

There are limited data on the effects of multiple exposures of experimental animals to montmorillonite or bentonite. Mice maintained on diets containing 10% or 25% bentonite but otherwise adequate to support normal growth displayed slightly reduced growth rates, whereas mice maintained on a similar diet with 50% bentonite showed minimal growth and developed fatty livers and eventually fibrosis of the liver and benign hepatomas.

In vitro studies of the effects of bentonite on a variety of mammalian cell types usually indicated a high degree of cytotoxicity. Concentrations below 1.0 mg/ml of bentonite and montmorillonite particles less than 5 um in diameter caused membrane damage and even cell lysis, as well as functional changes in several types of cells.

No adequate studies are available on the carcinogenicity of bentonite. In an inhalation study and in a study using intrapleural injection, kaolin did not induce tumours in rats. No studies are available on the genotoxicity of clays.

Single, very limited studies did not demonstrate developmental toxicity in rats after oral exposure to bentonite or kaolin. Chronic dust inhalation of kaolin, as experienced in mineral extraction, has caused kaolinosis with heavy lung marking, emphysema, and nodular pneumoconiosis.

Evidence of kaolinosis (pneumoconiosis) was found in 9% of 553 Cornish china clay workers who had been exposed to kaolin dust for periods exceeding 5 years, whereas no kaolinosis was observed in workers exposed for less than 5 years. Workers in more heavily exposed jobs of milling, bagging and loading showed a prevalence of kaolinosis rising from 6% in those within between 5 and 15 years exposure to 23% in those exposed for more than 15 years. Workers intermittently and less heavily exposed in the older, outdated drying plants required 25 years of massive exposure before reaching the highest prevalence of 17%. Massive fibrosis was seen in four workers, and six workers needed antituberculosis chemotherapy. Preventative measures

Chemwatch: **5475-85** Page **10** of **18**

Version No: 3.1.9.8

Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

instituted include preemployment chest examination and approaches to the problem of dust control.

Sheer, G.; Brit. Jnl. Ind. Med. 21, pp 218-225, 1964

When administered in the diet, 3,3'-dichlorobenzidine induced hepatomas in male mice, increased the incidences of granulocytic leukemia and Zymbal gland carcinomas in male rats and mammary adenocarcinomas in rats of both sexes, induced transitional cell carcinomas of the urinary bladder in hamsters and female dogs and hepatocellular carcinomas in female dogs.

Transplacental exposure increased the incidences of lymphoid leukemia in mice. In three retrospective epidemiological studies, no urinary bladder tumors were reported in men occupationally exposed to 3,3'-dichlorobenzidine

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

	IRRITATION
Not Available	Not Available
TOXICITY	IRRITATION
Not Available	Not Available
TOXICITY	IRRITATION
dermal (hamster) LD50: >=10000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]
Inhalation(Rat) LC50; >2.28 mg/l4h ^[1]	Skin (human): 0.3 mg /3D (int)-mild *
Oral(Rat) LD50; >=2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
TOXICITY	IRRITATION
Not Available	Not Available
TOXICITY	IRRITATION
dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
Oral(Rat) LD50; >2100 mg/kg ^[1]	
TOXICITY	IRRITATION
dermal (guinea pig) LD50: 58500 mg/kg ^[1]	Not Available
Oral(Rat) LD50; >20<39800 mg/kg ^[1]	
TOXICITY	IRRITATION
Oral(Rat) LD50; >90000 mg/kg ^[2]	Not Available
1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS.	
	TOXICITY Not Available TOXICITY dermal (hamster) LD50: >=10000 mg/kg ^[2] Inhalation(Rat) LC50; >2.28 mg/l4h ^[1] Oral(Rat) LD50; >=2000 mg/kg ^[1] TOXICITY Not Available TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Oral(Rat) LD50; >2100 mg/kg ^[1] TOXICITY dermal (guinea pig) LD50: 58500 mg/kg ^[1] Oral(Rat) LD50; >20<39800 mg/kg ^[1] TOXICITY Oral(Rat) LD50; >90000 mg/kg ^[2]

for bentonite clays:

Bentonite (CAS No. 1302-78-9) consists of a group of clays formed by crystallisation of vitreous volcanic ashes that were deposited in water.

The expected acute oral toxicity of bentonite in humans is very low (LD50>15 g/kg). However, severe anterior segment inflammation, uveitis and retrocorneal abscess from eye exposure were reported when bentonite had been used as a prophypaste.

KAOLIN

In a 33 day dietary (2 and 6%) and a 90 day dietary (1, 3 and 5%) studies in chickens, no changes in behaviour, overall state, clinical and biochemical parameters and electrolytic composition of the blood. Repeat dietary administration of bentonite did not affect calcium or phosphorus metabolism. However, larger amounts caused decreased growth, muscle weakness, and death with marked changes in both calcium and phosphorus metabolism.

Bentonite did not cause fibrosis after 1 year exposure of 60 mg dust (<5 um) in a rat study. However, in a second rat study, where 5 um particles were intratracheally instilled at 5, 15 and 45 mg/rat, dose-related fibrosis was observed. Bentonite clay dust is believed to be responsible for bronchial asthma in workers at a processing plant in USA.

Ingestion of bentonite without adequate liquids may result in intestinal obstruction in humans.

Hypokalaemia and microcytic iron-deficiency anaemia may occur in patients after repeat doses of clay. Chronic ingestion has been reported to cause myositis.

TITANIUM DIOXIDE

* IUCLID

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

For titanium dioxide:

Humans can be exposed to titanium dioxide via inhalation, ingestion or dermal contact. In human lungs, the clearance kinetics of titanium dioxide is poorly characterized relative to that in experimental animals. (General particle characteristics and host factors that are considered to affect deposition and retention patterns of inhaled, poorly soluble particles such as titanium dioxide are

 Chemwatch: 5475-85
 Page 11 of 18
 Issue Date: 15/07/2021

 Version No: 3.1.9.8
 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

summarized in the monograph on carbon black.) With regard to inhaled titanium dioxide, human data are mainly available from case reports that showed deposits of titanium dioxide in lung tissue as well as in lymph nodes. A single clinical study of oral ingestion of fine titanium dioxide showed particle size-dependent absorption by the gastrointestinal tract and large interindividual variations in blood levels of titanium dioxide. Studies on the application of sunscreens containing ultrafine titanium dioxide to healthy skin of human volunteers revealed that titanium dioxide particles only penetrate into the outermost layers of the stratum corneum, suggesting that healthy skin is an effective barrier to titanium dioxide. There are no studies on penetration of titanium dioxide in compromised skin.

Respiratory effects that have been observed among groups of titanium dioxide-exposed workers include decline in lung function, pleural disease with plaques and pleural thickening, and mild fibrotic changes. However, the workers in these studies were also exposed to asbestos and/or silica.

No data were available on genotoxic effects in titanium dioxide-exposed humans.

Many data on deposition, retention and clearance of titanium dioxide in experimental animals are available for the inhalation route. Titanium dioxide inhalation studies showed differences — both for normalized pulmonary burden (deposited mass per dry lung, mass per body weight) and clearance kinetics — among rodent species including rats of different size, age and strain. Clearance of titanium dioxide is also affected by pre-exposure to gaseous pollutants or co-exposure to cytotoxic aerosols. Differences in dose rate or clearance kinetics and the appearance of focal areas of high particle burden have been implicated in the higher toxic and inflammatory lung responses to intratracheally instilled vs inhaled titanium dioxide particles. Experimental studies with titanium dioxide have demonstrated that rodents experience dose-dependent impairment of alveolar macrophagemediated clearance. Hamsters have the most efficient clearance of inhaled titanium dioxide. Ultrafine primary particles of titanium dioxide are more slowly cleared than their fine counterparts.

Titanium dioxide causes varying degrees of inflammation and associated pulmonary effects including lung epithelial cell injury, cholesterol granulomas and fibrosis. Rodents experience stronger pulmonary effects after exposure to ultrafine titanium dioxide particles compared with fine particles on a mass basis. These differences are related to lung burden in terms of particle surface area, and are considered to result from impaired phagocytosis and sequestration of ultrafine particles into the interstitium. Fine titanium dioxide particles show minimal cytotoxicity to and inflammatory/pro-fibrotic mediator release from primary human alveolar macrophages in vitro compared with other particles. Ultrafine titanium dioxide particles inhibit phagocytosis of alveolar macrophages in vitro at mass dose concentrations at which this effect does not occur with fine titanium dioxide. In-vitro studies with fine and ultrafine titanium dioxide and purified DNA show induction of DNA damage that is suggestive of the generation of reactive oxygen species by both particle types. This effect is stronger for ultrafine than for fine titanium oxide, and is markedly enhanced by exposure to simulated sunlight/ultraviolet light.

Animal carcinogenicity data

Pigmentary and ultrafine titanium dioxide were tested for carcinogenicity by oral administration in mice and rats, by inhalation in rats and female mice, by intratracheal administration in hamsters and female rats and mice, by subcutaneous injection in rats and by intraperitoneal administration in male mice and female rats.

In one inhalation study, the incidence of benign and malignant lung tumours was increased in female rats. In another inhalation study, the incidences of lung adenomas were increased in the high-dose groups of male and female rats. Cystic keratinizing lesions that were diagnosed as squamous-cell carcinomas but re-evaluated as non-neoplastic pulmonary keratinizing cysts were also observed in the high-dose groups of female rats. Two inhalation studies in rats and one in female mice were negative. Intratracheally instilled female rats showed an increased incidence of both benign and malignant lung tumours following treatment with two types of titanium dioxide. Tumour incidence was not increased in intratracheally instilled hamsters and female mice

In-vivo studies have shown enhanced micronucleus formation in bone marrow and peripheral blood lymphocytes of intraperitoneally instilled mice. Increased Hprt mutations were seen in lung epithelial cells isolated from titanium dioxide-instilled rats. In another study, no enhanced oxidative DNA damage was observed in lung tissues of rats that were intratracheally instilled with titanium dioxide. The results of most in-vitro genotoxicity studies with titanium dioxide were negative.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

For diarylide (disazo) pigments (3,3'-dichlorobenzidine-containing):

The substances in this category do not present a hazard for human health due to their low hazard profile. Adequate screening-level data are available to characterise the human health hazard for the purposes of the OECD Cooperative Chemicals Assessment Programme.

Diarylide pigments are synthesized by bis-diazotizing diamino-diphenyl derivatives, mainly 3,3'-dichlorobenzidine (DCB), and coupling with acetoacetarylides or arylsubstituted pyrazolones

Studies indicate that essentially there is no potential for uptake via the oral and dermal routes. However, following repeated oral exposure at high dose levels, there is some evidence that a very limited uptake of the compound (or its impurities) could occur, based on observations of staining of the mucosal surfaces of internal organs (although the possibility of contamination during necropsy cannot be excluded). In an oral reproductive developmental screening study, staining of the pups could indicate a potential for limited placental transfer, again at a high dose level. Given that the Pigment Yellows are essentially not absorbed into the body,metabolism is not relevant. However, the presence of very low levels of 3,3'-dichlorobenzidine has been demonstrated in two studies using very sensitive techniques following oral administration of some yellow pigment compounds. It seems likely that this is due to the presence of a mono-azo impurity in some of the yellow pigment parent compounds, which is absorbed and subsequently metabolised. No DCB was found in the urine of experimental animals after exposure orally or via the lungs in long term studies. Following ingestion, the vast majority of the pigments are excreted unchanged in the faeces.

Many diarylide pigments are derived from DCB. Therefore, the diarylide pigments on DCB basis have been tested toxicologically very extensively. Diarylide pigments with their LD50 values above 2 000 mg/kg show no acute toxicity according to the EU classification criteria. They are not irritating to the skin or mucous membranes.

For acute dermal toxicity a single LD50 of >3,000 mg/kg bw is available for Pigment Yellow 13. No deaths or clinical signs of

C.I. PIGMENT ORANGE 13

 Chemwatch: 5475-85
 Page 12 of 18
 Issue Date: 15/07/2021

 Version No: 3.1.9.8
 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

toxicity were observed following oral or dermal exposure. The inhalation LC50 available is >4,448 mg/m3 for Pigment Yellow 13. Tachypnoea, dyspnoea, exophthalmos, ruffled fur and curved or ventral body position were observed, although all animals recovered and no gross abnormalities were observed at necropsy.

Based on the available data the pigments have a minimal to slight potential for eye irritation. There is no indication that they are sensitisers

No adverse effects were seen after 4-7 weeks oral administration of Pigment Yellow 12 at 1000 mg/kg/day (NOAEL), the highest dose tested in a well conducted and reported test of repeated dose toxicity study. Furthermore, in the cases of Pigment Yellow 12 and 83, no toxicologically significant effects were observed in a range of chronic toxicity studies of lesser quality (in terms of reporting) in rats and mice at doses up to 6500 mg/kg/day. Based on the kinetics of the three pigments and the chemical similarities, it can be concluded that these findings can be extrapolated to most if not all diarylide pigments.

For the inhalation route the effects seen are related to the deposition of dust particles in the lungs, leading to Pigment Yellow 13 related effects even at the lowest exposure concentration of 54 mg/m3 (local LOAEL). Systemically no effects were observed at the highest concentration tested, 410 mg/m3 (systemic NOAEL).

All three pigments are not genotoxic in bacterial tests. Pigment Yellow 12 did not induce clastogenic effects in mammalian cells. Based on the chemical similarities between the three pigments, it is predicted that all three Yellow Pigments will not induce chromosomal changes in mammalian cells. There are no in vitro data to suggest that the pigments are genotoxic in vivo. No increased tumour incidence after treatment with Pigment Yellow 12 and 83 were observed in several long-term studies in rats and mice (NOAEL (rat) > 630 mg/kg; NOAEL (mouse) > 1,960 mg/kg). Based on chemical similarity it can be concluded that the pigments are not carcinogenic.

It can be concluded that Pigment Yellow 12 does not have any adverse effects on reproductive parameters. There was no evidence of teratogenicity. The NOAEL for maternal and reproductive toxicity is >1,000 mg/kg bw. Supporting evidence is also available from the fact that no changes on the reproductive organs were observed in the studies of repeat dose toxicity and carcinogenicity study with Pigment Yellow 83. In view of the structural similarities and similar kinetics no effects on reproduction or development are expected from pigments of this class.

In studies of the bioavailability of several representatives of this group of pigments, no carcinogenic cleavage product was released in detectable amounts after oral, inhalative or intratracheal application on rats.

One further study of the bioavailability of DCB (DCB haemoglobin adduct) has been performed with the diarylide pigments C.I. Pigment Yellow 13 and C.I. Pigment Yellow 17. In this study, no release of carcinogenic DCB from the pigments has been detected. This indicates the absence of metabolism to DCB under the test conditions.

In summary then, according to the known studies, diarylide pigments do not represent any health risk although risks might attach to contaminants introduced during synthesis.

Colourants for Food Contact Plastics - Aspects of Product Safety; Responsible Care initiative of the European Chemical Industry Council.

For 3,3'-dichlorobenzidine:

Various tumours developed after oral or subcutaneous administration of 3,3'-dichlorobenzidine to mice, rats, hamsters and dogs. Tumours have not yet been identified in persons exposed to the substance alone. The substance can be absorbed through the skin in dangerous quantities. Increases in temperature and relative humidity promote dermal absorption.

Upper respiratory infection and sore throat were listed among several principal reasons for visits to a company's medical clinic by workers handling 3,3'-dichlorobenzidine dihydrochloride However, there is no conclusive evidence that these effects were due to inhalation of 3,3'-dichlorobenzidine dihydrochloride.

No adverse health effects were observed in male rats exposed by inhalation to 3,3'- dichlorobenzidine free base (23,700 mg/m3) 2 hours per day for 7 days. In another study, 10 rats were exposed to an unspecified concentration of 3,3'-dichlorobenzidine dihydrochloride dust particles for 1 hour and then observed for 14 days. Slight-to-moderate pulmonary congestion and one pulmonary abscess were observed upon necropsy. The effects observed in the study using the ionized (hydrochloride) form of 3,3'-dichlorobenzidine may have been due to the irritative properties of hydrochloric acid released from the salt in combination with particulate toxicity.

Gastrointestinal upset was one of the symptoms reported by employees who worked with 3,3'-dichlorobenzidine dihydrochloride. However, there is no conclusive evidence that the gastrointestinal effects, or other symptoms reported by employees, resulted specifically from inhalation of 3.3'-dichlorobenzidine dihydrochloride.

The only relevant information regarding neurological effects in humans exposed to 3,3'-dichlorobenzidine was found in an early study which reported that headache and dizziness were among several principal reasons why employees working with 3,3'-dichlorobenzidine in a chemical manufacturing plant visited the company medical clinic. However, there is no conclusive evidence that these symptoms were caused specifically by 3,3'-dichlorobenzidine since there was exposure to other chemicals as well. In a 3,3'-dichlorobenzidine carcinogenicity study, 1 of 6 dogs exhibited convulsions after 21, 28, or 42 months of oral treatment with 10.4 mg/kg/day over a period of 3.5 years

Carcinogenicity: Several epidemiological studies have investigated cancer incidences among workers occupationally exposed to 3,3'-dichlorobenzidine. Exposure may have been by both inhalation and dermal routes. Due, in part, to structure-activity considerations, epidemiological studies of potential cancer effects of occupational exposure to 3,3'-dichlorobenzidine have been particularly concerned with bladder tumors, since 3,3'-dichlorobenzidine is structurally similar to benzidine, a chemical which is known to be a human bladder carcinogen. No bladder tumors were found in a group of 35 workers who handled only 3,3'-dichlorobenzidine; in the same dyestuff plant, bladder tumors occurred in 3 out of 14 workers exposed to both benzidine and 3,3'-dichlorobenzidine. The investigator reported a total exposure time of 68,505 hours, equivalent to nearly 140 full-time working years. No cases of bladder tumors were found in an epidemiology study of 259 workers exposed to dry and sernidry 3,3'-dichlorobenzidine base and hydrochloride. Workers were exposed to an average of less than 16 years each to 3,3'-dichlorobenzidine, which means that an adequate exposure duration and/or the latent period following exposure may not have been reached for tumor expression.

In a retrospective epidemiological study of workers employed in a dye and pigment manufacturing plant that used 3,3'-dichlorobenzidine as chemical precursor, no bladder tumors were observed in a cohort of 207 workers, most of whom had been exposed for up to 15 years. Limitations of this study included using data from a very small and incomplete sample of workers; focusing solely on the occurrence of bladder tumors; and using data that may have been misleading and, at times, apparently inaccurate.

A statistically significant increased incidence of hepatomas was observed in male ICR/JCL mice exposed to 0.1%

Chemwatch: **5475-85**Version No: **3.1.9.8**

Page 13 of 18 Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

3,3'-dichlorobenzidine in the diet (170 mg/kg/day) at 6 months (8 of 8 treated as opposed to 0 of 5 controls) and 12 months (18 of 18 treated as opposed to 2 of 2 1 controls). Hepatic tumors were observed in 4/I 8 strain D mice exposed to 11.2-I 1.9 mg 3,3'-dichlorobenzidine/kg/day in the diet for 10 months

No bladder carcinomas were observed in rats exposed to 0.03% 3,3'-dichlorobenzidine in the diet (27 mg/kg/day) for 4 or 40 weeks , nor were any mammary tumors observed in rats administered approximately 49 mg 3,3'-dichlorobenzidine dihydrochloride/kg/day by gavage once every 3 days over a 30-day period and sacrificed 8 months later. In a study in which rats were exposed to 10-20 mg 3,3'-dichlorobenzidine per day (120 mg/kg/day) in feed 6 days per week for 12 months, tumors were observed at a variety of sites, including the Zymbal gland (7 of 29 animals), mammary gland (7/29), bladder (3/29), hematopoietic system (3/29), skin (3/29), ileum (2/29), connective tissue (2/29), salivary gland (2/29), liver (I/29), and thyroid (I/29).

In another rat study, 3,3'-dichlorobenzidine was administered to 50 male (70 mg/kg/day) and 50 female (80 mg/kg/day) Sprague-Dawley rats, in a standard diet for up to 16 months. In rats fed 3,3'-dichlorobenzidine in the diet for a total of 349 days (females) and 353 days (males), histopathological evaluations revealed mammary adenocarcinoma (16% incidence), malignant lymphoma (14%) granulocytic leukemia (20%), carcinoma of the Zymbal gland (18%) in males, and mammary adenocarcinoma (59%) in females. The authors noted that most of these tumors appeared to arise in the bone marrow and haematopoietic foci in the spleen and liver with subsequent metastasis to other organs.

Haematological Effects. Although haematological effects may not be sensitive indicators for 3,3'-dichlorobenzidine toxicity, haemoglobin adducts have been detected in female Wistar rats orally administered single 127 or 253 mg/kg doses of 3,3'-dichlorobenzidine or with repeated doses between 0.3 and 5.8 mg/kg/day. It was suggested that metabolically formed nitroso derivatives and the formation of a sulfinic acid amide with cysteine residues in haemoglobin may be the mechanism of adduct formation.

Hepatic Effects. Limited animal evidence suggests that chronic-duration oral exposure to 3,3'-dichlorobenzidine results in mild-to-moderate liver injury.

Genotoxic effects: Genotoxic effects have been reported in animals treated with 3,3'-dichlorobenzidine. A single dose of 3,3'-dichlorobenzidine (1,000 mg/kg) administered to male and pregnant female mice induced micronuclei in polychromatic erythrocytes in the bone marrow of the males and in the liver of the foetuses, but not in bone marrow of the dams. In another study, an increase in unscheduled deoxyribonucleic acid synthesis (UDS) was observed in cultured liver cells from male mice previously pretreated orally with single doses of . 500 mg/kg 3,3'-dichlorobenzidine; no response was observed at a dose of .200 mg/kg. 3,3'-Dichlorobenzidine was also shown to bind extensively to tissue deoxyribonucleic acid (DNA) in rats and mice

In vitro screening test for mutagenicity: negative

For glycerol:

Acute toxicity: Glycerol is of a low order of acute oral and dermal toxicity with LD50 values in excess of 4000 mg/kg bw. At very high dose levels, the signs of toxicity include tremor and hyperaemia of the gastro-intestinal -tract. Skin and eye irritation studies indicate that glycerol has low potential to irritate the skin and the eye. The available human and animal data, together with the very widespread potential for exposure and the absence of case reports of sensitisation, indicate that glycerol is not a skin sensitiser.

Repeat dose toxicity: Repeated oral exposure to glycerol does not induce adverse effects other than local irritation of the gastro-intestinal tract. The overall NOEL after prolonged treatment with glycerol is 10,000 mg/kg bw/day (20% in diet). At this dose level no systemic or local effects were observed. For inhalation exposure to aerosols, the NOAEC for local irritant effects to the upper respiratory tract is 165 mg/m3 and 662 mg/m3 for systemic effects.

GLYCEROL

Genotoxicity: Glycerol is free from structural alerts, which raise concern for mutagenicity. Glycerol does not induce gene mutations in bacterial strains, chromosomal effects in mammalian cells or primary DNA damage *in vitro*. Results of a limited gene mutation test in mammalian cells were of uncertain biological relevance. *In vivo*, glycerol produced no statistically significant effect in a chromosome aberrations and dominant lethal study. However, the limited details provided and the absence of a positive control, prevent any reliable conclusions to be drawn from the *in vivo* data. Overall, glycerol is not considered to possess genotoxic potential

Carcinogenicity: The experimental data from a limited 2 year dietary study in the rat does not provide any basis for concerns in relation to carcinogenicity. Data from non-guideline studies designed to investigate tumour promotion activity in male mice suggest that oral administration of glycerol up to 20 weeks had a weak promotion effect on the incidence of tumour formation.

Reproductive and developmental toxicity: No effects on fertility and reproductive performance were observed in a two generation study with glycerol administered by gavage (NOAEL 2000 mg/kg bw/day). No maternal toxicity or teratogenic effects were seen in the rat, mouse or rabbit at the highest dose levels tested in a guideline comparable teratogenicity study (NOEL 1180 mg/kg bw/day).

KAOLIN & TITANIUM DIOXIDE & C.I. PIGMENT RED 21 & WATER

No significant acute toxicological data identified in literature search. \\

TITANIUM DIOXIDE & GLYCEROL

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity

¥

Carcinogenicity

Page **14** of **18**

Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

Jasart Byron Kids Wash Paint	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availabl
kaolin	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availabl
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50	72h	Algae or other aquatic plants	3.75-7.58mg/l	4
	BCF	1008h	Fish	<1.1-9.6	7
titanium dioxide	EC50	48h	Crustacea	1.9mg/l	2
	LC50	96h	Fish	1.85-3.06mg/l	4
	NOEC(ECx)	504h	Crustacea	0.02mg/l	4
	EC50	96h	Algae or other aquatic plants	179.05mg/l	2
C.I. Pigment Red 21	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Availab
	Endpoint	Test Duration (hr)	Species	Value	Sourc
C.I. Birmant Orange 42	BCF	1008h	Fish	0.75-5.6	7
C.I. Pigment Orange 13	LC50	96h	Fish	>500mg/l	2
	NOEC(ECx)	72h	Algae or other aquatic plants	1mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
glycerol	EC0(ECx)	24h	Crustacea	>500mg/l	1
	LC50	96h	Fish	885mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
water	Not Available	Not Available	Not Available	Not Available	Not Availabl
Legend:	3. EPIWIN Su	ite V3.12 (QSAR) - Aquatic Toxicit	e ECHA Registered Substances - Ecotoxicolo y Data (Estimated) 4. US EPA, Ecotox databa IITE (Japan) - Bioconcentration Data 7. METI	se - Aquatic Toxicity Da	ata 5.

Bentonite and kaolin have low toxicity to aquatic species, a large number of which have been tested for organic pigments:

With only a few recognised exceptions, color pigments, both organic and inorganic, are extremely insoluble in water and in the vehicles in which they are mixed. Colour pigments are not, therefore, a threat to the environment when disposed of with solid waste in appropriate lined landfills. Colour pigments are further protected from leaching into groundwater by the plastics, paints and inks that make up the final products incorporating colour pigments.

As pigments are designed to be chemically and photolytically stable, they are highly persistent in natural environments. Many pigments are visible in water at concentrations as low as 1 mg/l. Waste waters, typically with a pigment content in the range 10- 200 mg /l, are therefore usually highly coloured and discharge in open waters presents an aesthetic problem.

The high Log Kow and Koc values indicate that these substance will likely partition to soil and sediments. Modelling results indicate that if these chemical are released equally into the three major environmental compartments (air, water and soil), they will mainly partition into soil and sediments where they will persist. Organic Pigments generally have high estimated values of log Koc and are expected show high absorptivity to soils; they are therefore expected to be immobile.

Page 15 of 18 Jasart Byron Kids Wash Paint

Issue Date: 15/07/2021 Print Date: 15/07/2021

Furthermore the very low estimated vapour pressure and Henry's Law Constants indicate that volatilisation will not occur from soil surfaces, and the low water solubility indicates indicates they will not be mobilised from the soil phase.

As a result of extreme insolubility, these compounds are non-toxic and very low in bioavailability. In the literature, there are three published summaries concerning the acute toxicity of pigments. The vast majority of these LD50 values are above 5000 mg/kg and no LD50 values for pigments are known to be below 2000 mg/kg. As such, when compared to other compounds, organic pigments are not assigned a high regulatory priority based on toxicity.

Due to their extremely low solubility, in both lipids and water, organic pigments are not bioaccumulative nor do they bioconcentrate in the food chain. This has been shown by extensive tests which have indicated that, even though log Kow values for organic pigments may be calculated at levels that would signal concern, in actual tests, organic pigments do not exhibit any potential to bioaccumulate.

The chemical processes underlying degradation and/ or destruction of organic pigments through light or atmospheric conditions are difficult to elucidate. Atmospheric contaminants such as peroxides, which appear as the products of radiation frequently initiate the degradation process.

For the most part organic pigments do not seem to be biodegradable, neither readily nor inherently.

As an example, the azo linkage of azo dves, but not of azo pigments, may undergo metabolic cleavage resulting in free component aromatic amines. Azo pigments are, due to their very low solubility in water, in practice, not available for metabolic activity. Consequently, metabolic cleavage to the component aromatic amines has not been found for the pigments.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
titanium dioxide	HIGH	HIGH
glycerol	LOW	LOW
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
titanium dioxide	LOW (BCF = 10)
C.I. Pigment Orange 13	LOW (BCF = 5.6)
glycerol	LOW (LogKOW = -1.76)

Mobility in soil

Ingredient	Mobility
titanium dioxide	LOW (KOC = 23.74)
glycerol	HIGH (KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- ▶ Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- · Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).

Jasart Byron Kids Wash Paint

Issue Date: 15/07/2021 Print Date: 15/07/2021

Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
kaolin	Not Available
titanium dioxide	Not Available
C.I. Pigment Red 21	Not Available
C.I. Pigment Orange 13	Not Available
glycerol	Not Available
water	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
kaolin	Not Available
titanium dioxide	Not Available
C.I. Pigment Red 21	Not Available
C.I. Pigment Orange 13	Not Available
glycerol	Not Available
water	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

kaolin is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

titanium dioxide is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

the IAIXO Monographs

C.I. Pigment Red 21 is found on the following regulatory lists

Not Applicable

C.I. Pigment Orange 13 is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

Version No: 3.1.9.8 Jasart Byron Kids Wash Paint

Issue Date: **15/07/2021**Print Date: **15/07/2021**

glycerol is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

water is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	No (C.I. Pigment Red 21)
Canada - DSL	No (C.I. Pigment Red 21)
Canada - NDSL	No (kaolin; C.I. Pigment Orange 13; glycerol; water)
China - IECSC	No (C.I. Pigment Red 21)
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (kaolin)
Korea - KECI	No (C.I. Pigment Red 21)
New Zealand - NZIoC	No (C.I. Pigment Red 21)
Philippines - PICCS	No (C.I. Pigment Red 21)
USA - TSCA	Yes
Taiwan - TCSI	No (C.I. Pigment Red 21)
Mexico - INSQ	No (C.I. Pigment Red 21)
Vietnam - NCI	Yes
Russia - FBEPH	No (C.I. Pigment Red 21)
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	15/07/2021
Initial Date	12/07/2021

SDS Version Summary

Version	Date of Update	Sections Updated
3.1.9.8	15/07/2021	Name

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

Chemwatch: 5475-85 Page 18 of 18 Issue Date: 15/07/2021 Version No: 3.1.9.8 Print Date: 15/07/2021

Jasart Byron Kids Wash Paint

LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.